专长:RNA 疗法的基因洞察。
Deep Genomics 利用人工智能解码基因组数据,并识别 RNA 疗法的靶点。其专有平台 SPIDEX 已为罕见遗传疾病的治疗开发出有前景的候选药物。Deep Genomics 在利用人工智能设计下一代 RNA 药物方面处于领先地位。
2015年,Brendan Frey与Hannes Bretschneider等人成立了Deep Genomics。公司有20多名拥有高等学位的团队成员,包括科学、工程、医药和商业领域的专家。
该团队在自然、科学、细胞和自然生物技术领域发表了十多篇论文,获得了众多的科学和创新奖,并积累了超过50年的经验,建立了精确结合了基因组生物学的人工智能系统。
这个由机器学习专家、基因组学专家和医疗专家组成的团队有着强大的技术支撑,公司在建立伊始就被《科学美国人》、《华盛顿邮报》等知名媒体报道,比作“将深度学习的能量带到基因组学的创业公司”。
目前,这家公司已经与医院、生物科技创业公司以及制药公司展开合作,使用基因疾病患者的基因数据测试公司系统。
基因组学遇上深度学习
要推进基因组学,就需要了解基因表达是如何被基因变体所改变。尤其是那些在蛋白质编码区之外的基因,DNA剪接是其表达的关键步骤,它的破坏会导致某些疾病产生,如癌症和神经系统疾病。
Deep Genomics开发的一种计算机深度学习技术可以计算出遗传变异对DNA拼接的影响。该技术的思路是建立一个数学模型,导入健康人的全基因组序列和RNA序列,对模型进行训练,让它学到健康人的DNA剪切模式,并用分子生物学方法检验模型,加以校正。
“深度学习”揭示了疾病的遗传根源
该模型能够准确地对疾病的变异进行分类,并提供异常剪接对疾病影响的见解。
除此之外还可将其用于研究多种疾病,如:结肠直肠癌(Colorectal Cancer)和脊髓性肌肉萎缩(spinal muscular atrophy)自闭症(Autism Spectrum Disorder),并确定常见、罕见甚至自发变异的结果。
从技术走向产品
Frey领导的研究小组开发的第一个深度学习方法,是用于确定疾病的遗传决定因素。他解决的痛点是,人群中的DNA突变(SNVs)数以亿计,其中突变频率大于1%的SNVs也有300万个左右,要挨个调查SNVs与各种疾病的关联难如登天。
在前面所述建立数学模型这一思路下,Deep Genomics推出了他们的第一款产品SPIDEX。只需将测序结果和细胞类型导入,SPIDEX便可分析出某一变异(基因组突变)对RNA剪切的影响,并计算出该变异与疾病之间的关系。
SPIDEX产品设计思路是:
建立计算模型
使用“深度学习”算法来推导出一种计算模型,该模型以正常DNA序列作为输入,通过将健康人体组织中具有剪接水平的DNA与DNA片段相关联,来推断剪接的计算模型。
假设有一个测试变量,它可能有多达300个核苷酸进入一个内含子,该模型可以用来计算变量的剪接有多少。
建立计算模型
使用模型检测破坏性遗传变体
由广泛的疾病和技术引起的遗传变异,可以通过该计算模型被检测和过滤,从而对疾病的遗传进行探索。该模型预测了由于内含子和外显子的变异而导致的大量异常剪接,为理解疾病的遗传决定因素提供了新机会。
使用模型检测破坏性遗传变体
SPIDEX可以将无害的突变与有害的突变区分开来,并帮助科研人员理解它们与其他基因过程的关系。
2016年,Deep Genomics为弄明白突变会如何改变细胞,进而给人体造成的影响,用SPIDEX预测了3.28亿个SNVs。不过,预测只是做了初步筛选,而有害突变与疾病的对应关系还尚未建立。
如果Deep Genomics的深度学习分析变得足够精确,那么这项技术的贡献就显而易见:直接分析突变频率低的变异与疾病的关系;加速基因组学的研究和药物的开发。
然而,目前Deep Genomics的SPIDEX技术只能分析SNVs引起的RNA剪切变异与疾病的关系,对于其他原因导致的疾病无能为力。
但即便如此,人工智能在基因分析中的应用仍然值得期待,也许它会成为解码基因与疾病奥秘的一把金钥匙。