中国科学院深圳先进技术研究院提出的Swin-UMamba进一步推动了图像分割任务中的模型架构优化。与TransUNet不同,Swin-UMamba基于Swin Transformer的层次化特性,通过局部自注意力机制有效捕捉多尺度特征,同时充分利用了在ImageNet上预训练的优势,结合基础模型在自然图像上学到的知识,大幅提升了模型在医疗影像任务中的数据效率和性能,展现了出色的迁移能力。Swin-UMamba能够跨越多种模态(如MRI、内镜图像、显微镜图像等)实现精确分割。