关键词 "乳腺癌" 的搜索结果, 共 2 条, 只显示前 480 条
TANGLE,一种幻灯片 + 表达 (S+E) 预训练的方法。从概念上讲,这种方法遵循视觉语言模型中广泛采用的 CLIP 原理。在这里,我们将幻灯片与其相应的基因表达谱对齐。生成的幻灯片编码器嵌入了组织的底层分子景观,因此可以用于各种下游任务。在这项工作中,我们专注于乳腺癌和肺癌的形态学亚型以及临床前药物安全性研究中的形态学病变检测。
开发能够学习通用且可迁移的 H&E 千兆像素全切片图像 (WSI) 表征的自监督学习 (SSL) 模型,在计算病理学中正变得越来越重要。这些模型有望推进诸如小样本分类、切片检索和患者分层等关键任务。现有的切片表征学习方法通常通过将切片的两个不同增强图像(或视图)对齐,将 SSL 的原理从小图像(例如 224x224 的图像块)扩展到整张切片。然而,最终的表征仍然受限于视图有限的临床和生物多样性。因此,我们假设,用多种标记物(例如免疫组化染色)染色的切片可以用作不同的视图,从而形成丰富的、与任务无关的训练信号。为此,我们引入了 MADELEINE,一种用于切片表征学习的多模态预训练策略。 MADELEINE 已在大量乳腺癌样本(N=4,211 个 WSI,涵盖五种染色)和肾移植样本(N=12,070 个 WSI,涵盖四种染色)上进行了双全局-局部交叉染色比对目标训练。我们展示了 MADELEINE 在各种下游评估(从形态学和分子分类到预后预测)中学习到的载玻片表征的质量,这些评估涵盖了 21 项任务,使用了来自多个医疗中心的 7,299 个 WSI。
只显示前20页数据,更多请搜索