关键词 "代码推理" 的搜索结果, 共 1 条, 只显示前 480 条
在本研究中,我们推出了 MiMo-7B 系列模型,这一系列模型从零开始训练,专为推理任务而生。我们基于 MiMo-7B-Base 进行的强化学习实验表明,我们的模型拥有非凡的推理潜力,甚至超越了规模更大的 32B 模型。此外,我们还对冷启动的 SFT 模型进行了强化学习训练,最终形成了 MiMo-7B-RL,它在数学和代码推理任务上均表现出色,性能堪比 OpenAI o1-mini。 我们开源了 MiMo-7B 系列,包括基础模型、SFT 模型、基于基础模型训练的强化学习模型以及基于 SFT 模型训练的强化学习模型的检查点。我们相信,这份报告以及这些模型将为开发强大的推理 LLM 提供宝贵的见解,造福更广泛的社区。 亮点 预训练:为推理而生的基础模型 我们优化了数据预处理流程,增强了文本提取工具包,并应用多维数据过滤来提高预训练数据中的推理模式密度。我们还采用多种策略来生成海量多样化的合成推理数据。 我们采用三阶段数据混合策略进行预训练。总体而言,MiMo-7B-Base 在约 25 万亿个 token 上进行了预训练。 我们将多标记预测作为额外的训练目标,以增强模型性能并加速推理。 训练后食谱:先驱推理模型 我们精选了 13 万道数学和代码题作为强化学习训练数据,可供基于规则的验证器进行验证。每道题都经过仔细的清理和难度评估,以确保质量。我们仅采用基于规则的准确率奖励机制,以避免潜在的奖励黑客攻击。 为了缓解高难度代码问题的稀疏奖励问题,我们引入了测试难度驱动的代码奖励机制。通过为不同难度级别的测试用例分配细粒度的分数,我们能够利用密集的奖励信号更有效地优化策略。 我们针对简单问题实施数据重采样策略,以提高推出采样效率并稳定策略更新,特别是在 RL 训练的后期阶段。 强化学习基础设施 我们开发了无缝部署引擎 (Seamless Rollout Engine),以加速强化学习 (RL) 的训练和验证。
只显示前20页数据,更多请搜索