关键词 "具身" 的搜索结果, 共 10 条, 只显示前 480 条
昆仑万维正式开源(17B+)Matrix-Game大模型,即Matrix-Zero世界模型中的可交互视频生成大模型。Matrix-Game是Matrix系列在交互式世界生成方向的正式落地,也是工业界首个开源的10B+空间智能大模型,它是一个面向游戏世界建模的交互式世界基础模型,专为开放式环境中的高质量生成与精确控制而设计。 空间智能作为AI时代的重要前沿技术,正在重塑我们与虚拟世界的
Being-M0 基于业界首个百万级动作数据集 MotionLib,用创新的 MotionBook 编码技术,将动作序列转化为二维图像进行高效表示和生成。Being-M0 验证了大数据+大模型在动作生成领域的技术可行性,显著提升动作生成的多样性和语义对齐精度,实现从人体动作到多款人形机器人的高效迁移,为通用动作智能奠定基础。 Being-M0的主要功能 文本驱动动作生成:根据输入的自然语言
MSQA(Multi-modal Situated Question Answering)是大规模多模态情境推理数据集,提升具身AI代理在3D场景中的理解与推理能力。数据集包含251K个问答对,覆盖9个问题类别,基于3D场景图和视觉-语言模型在真实世界3D场景中收集。MSQA用文本、图像和点云的交错多模态输入,减少单模态输入的歧义。引入MSNN(Multi-modal Next-step Navi
Scenethesis 是 NVIDIA 推出的创新框架,用在从文本生成交互式 3D 场景。框架结合大型语言模型(LLM)和视觉感知技术,基于多阶段流程实现高效生成,用 LLM 进行粗略布局规划,基于视觉模块细化布局生成图像指导,用优化模块调整物体姿态确保物理合理性,基于判断模块验证场景的空间连贯性。Scenethesis 能生成多样化的室内外场景,具有高度的真实感和物理合理性,广泛应用在虚拟内容
英纬达发布了其最新的 Cosmos-Reason1系列模型,旨在提升人工智能在物理常识和具身推理方面的能力。随着人工智能在语言处理、数学及代码生成等领域取得显著进展,如何将这些能力扩展到物理环境中成为了一大挑战。 物理 AI(Physical AI)不同于传统的人工智能,它依赖于视频等感官输入,并结合现实物理法则来生成反应。物理 AI 的应用领域包括机器人和自动驾驶车辆等,需要具备常识推理能
银河通用发布全球首个产品级端到端具身 FSD 大模型 ——TrackVLA,一款具备纯视觉环境感知、语言指令驱动、可自主推理、具备零样本(Zero-Shot)泛化能力的具身大模型。 TrackVLA 是银河通用推出的产品级导航大模型,纯视觉环境感知、自然语言指令驱动、端到端输出语言和机器人动作,是一个由仿真合成动作数据训练的“视觉-语言-动作”(Vision-Language-Action, V
EmbodiedGen 是用于具身智能(Embodied AI)应用的生成式 3D 世界引擎和工具包。能快速生成高质量、低成本且物理属性合理的 3D 资产和交互环境,帮助研究人员和开发者构建具身智能体的测试环境。EmbodiedGen 包含多个模块,如从图像或文本生成 3D 模型、纹理生成、关节物体生成、场景和布局生成等,支持从简单物体到复杂场景的创建。生成的 3D 资产可以直接用于机器人仿真和
RoboBrain 2.0 是强大的开源具身大脑模型,能统一感知、推理和规划,支持复杂任务的执行。RoboBrain 2.0 包含 7B(轻量级)和 32B(全规模)两个版本,基于异构架构,融合视觉编码器和语言模型,支持多图像、长视频和高分辨率视觉输入,及复杂任务指令和场景图。模型在空间理解、时间建模和长链推理方面表现出色,适用机器人操作、导航和多智能体协作等任务,助力具身智能从实验室走向真实场景
RoboOS 2.0 是智谱开源的跨本体大小脑协同框架,专为具身智能设计。框架支持多机器人协作,基于集成MCP协议和无服务器架构实现轻量化部署,降低开发门槛。框架包含基于云计算的大脑模块,负责高级认知与多智能体协同;分布式小脑模块群,专司机器人专项技能执行;及实时共享内存机制,强化环境态势感知能力。RoboOS 2.0 提供标准化接口,消除硬件适配差异,用技能商店实现机器人技能模块的智能匹配与一键
TesserAct 是创新的 4D 具身世界模型,能预测 3D 场景随时间的动态演变,响应具身代理的动作。通过训练 RGB-DN(RGB、深度和法线)视频数据来学习,超越了传统的 2D 模型,能将详细的形状、配置和时间变化纳入预测中。TesserAct 的核心优势在于其时空一致性,支持新视角合成,显著提升了策略学习的性能。TesserAct的主要功能4D 场景生成:TesserAct 能生成包含
只显示前20页数据,更多请搜索