关键词 "几何" 的搜索结果, 共 12 条, 只显示前 480 条
Spateo(https://github.com/aristoteleo/spateo-release),这是一个3D时空建模框架,并将其应用于E9.5和E11.5的3D小鼠胚胎发生图谱,捕获了800万个细胞。Spateo支持可扩展、部分、非刚性对齐、多层细化和网格校正,以创建整个胚胎的分子全息图。它引入了数字化方法,揭示了从亚细胞到整个器官的多层次生物学,识别了新兴3D结构(例如,中脑-后脑边
腾讯混元大模型旗下最新发布的Hunyuan3D-2.0系列开源模型,迎来了五款产品(Turbo、Pro、Standard、Lite、Vision)的全系列开源,构建起完整的工具链体系,标志着中国大模型技术首次在多模态领域实现完整开源布局。从30秒生成高精度3D资产的开源框架,到覆盖文本、图像、视频的全模态开源体系,腾讯混元大模型正以开放姿态引领一场全球范围内的数字创作革命。 这一突破得益于腾讯自
GeoGebra 不仅仅是一套免费的数学工具,更是一个连接热心教师和学生的平台,为他们提供探索和学习数学的全新途径。能将函数快速转换为图形的网站。 GeoGebra是一个跨平台的动态数学软件。提供各级教育使用,包含了几何、代数、表格、图形、统计和微积分。曾获得数个欧洲和美国的教育软件大奖。 GeoGebra官方版是完全免费的类似几何画板的动态数学软件,支持数十种语言,支持多平台,获得多项国际性
Meta发布AssetGen 2.0 AI模型,可高效生成3D资产 Meta发布了AssetGet 2.0版本,Meta表示,2.0显著提升了细节和保真度,其中包括几何一致性和极其精细的细节。“AssetGen 2.0为行业树立了全新标准,并利用生成式AI突破了可能性的界限。” 从技术原理来看,AssetGen 1.0需要根据提示生成目标素材的多个2D图像视图,然后
昆仑万维正式开源(17B+)Matrix-Game大模型,即Matrix-Zero世界模型中的可交互视频生成大模型。Matrix-Game是Matrix系列在交互式世界生成方向的正式落地,也是工业界首个开源的10B+空间智能大模型,它是一个面向游戏世界建模的交互式世界基础模型,专为开放式环境中的高质量生成与精确控制而设计。 空间智能作为AI时代的重要前沿技术,正在重塑我们与虚拟世界的
Step1X-3D是什么 Step1X-3D 是StepFun联合LightIllusions推出的高保真、可控的 3D 资产生成框架。基于严格的数据整理流程,从超过 500 万个 3D 资产中筛选出 200 万个高质量数据,创建标准化的几何和纹理属性数据集。Step1X-3D 支持多模态条件输入,如文本和语义标签,基于低秩自适应(LoRA)微调实现灵活的几何控制。Step1X-3D 推动了 3
AlphaEvolve是谷歌DeepMind推出的通用科学Agent,基于结合大型语言模型(LLMs)的创造力和自动评估器来设计和优化高级算法。用Gemini Flash和Gemini Pro两种模型,基于进化框架不断改进最有潜力的算法。AlphaEvolve在数据中心调度、硬件设计、AI训练和复杂数学问题解决等领域取得显著成果,优化矩阵乘法算法,提升数据中心效率,在多个开放数学问题上取得突破。A
WorldMem 是南洋理工大学、北京大学和上海 AI Lab 推出的创新 AI 世界生成模型。模型基于引入记忆机制,解决传统世界生成模型在长时序下缺乏一致性的关键问题。在WorldMem中,智能体在多样化场景中自由探索,生成的世界在视角和位置变化后能保持几何一致性。WorldMem 支持时间一致性建模,模拟动态变化(如物体对环境的影响)。模型在 Minecraft 数据集上进行大规模训练,在真实
一款开源MathModelAgent的AI助手,专为数学建模设计的智能工具,能够自动完成从问题分析、模型构建、代码编写到论文撰写的全流程,展现了AI在学术与技术领域的深远潜力。 MathModelAgent:数学建模的革命性助手 MathModelAgent是一个多智能体协作系统,集成了多个专业模块,包括负责数学建模的“建模手”、代码编写与调试的“代码手”以及论
HRAvatar是清华大学联合IDEA团队推出的单目视频重建技术,支持从普通单目视频中生成高质量、可重光照的3D头像。HRAvatar用可学习的形变基和线性蒙皮技术,基于精准的表情编码器减少追踪误差,提升重建质量。HRAvatar将头像外观分解为反照率、粗糙度和菲涅尔反射等属性,结合物理渲染模型,实现真实的重光照效果。HRAvatar在多个指标上优于现有方法,支持实时渲染(约155 FPS),为数
3DTown 是哥伦比亚大学联合Cybever AI等机构推出的从单张俯视图生成3D城镇场景框架。框架基于区域化生成和空间感知的3D修复技术,将输入图像分解为重叠区域,基于预训练的3D对象生成器分别生成每个区域的3D内容,基于掩码修正流修复过程填补缺失的几何结构,同时保持结构连续性。3DTown 支持生成具有高几何质量和纹理保真度的连贯3D场景,在多种风格的场景生成中表现出色,优于现有的先进方法。
TripoSG 是 VAST-AI-Research 团队推出的基于大规模修正流(Rectified Flow, RF)模型的高保真 3D 形状合成技术, 通过大规模修正流变换器架构、混合监督训练策略以及高质量数据集,实现了从单张输入图像到高保真 3D 网格模型的生成。TripoSG 在多个基准测试中表现出色,生成的 3D 模型具有更高的细节和更好的输入条件对齐。 TripoSG的主要功能
只显示前20页数据,更多请搜索