关键词 "多模态" 的搜索结果, 共 24 条, 只显示前 480 条
DreamFit是什么 DreamFit是字节跳动团队联合清华大学深圳国际研究生院、中山大学深圳校区推出的虚拟试衣框架,专门用在轻量级服装为中心的人类图像生成。框架能显著减少模型复杂度和训练成本,基于优化文本提示和特征融合,提高生成图像的质量和一致性。DreamFit能泛化到各种服装、风格和提示指令,生成高质量的人物图像。DreamFit支持与社区控制插件的无缝集成,降低使用门槛。 Dre
TinyVLA是一种面向机器人操控的视觉-语言-动作(VLA)模型,由华东师范大学和上海大学团队推出。针对现有VLA模型的不足,如推理速度慢和需要大量数据预训练,提出解决方案。TinyVLA基于轻量级的多模态模型和扩散策略解码器,显著提高推理速度,减少对大规模数据集的依赖。模型在模拟和真实机器人平台上经过广泛测试,证明在速度、数据效率以及多任务学习和泛化能力方面优于现有的先进模型OpenVLA。T
VACE(Video Creation and Editing)是阿里巴巴通义实验室推出的一站式视频生成与编辑框架。基于整合多种视频任务(如参考视频生成、视频到视频编辑、遮罩编辑等)到一个统一模型中,实现高效的内容创作和编辑功能。VACE的核心在于Video Condition Unit(VCU),将文本、图像、视频和遮罩等多种模态输入整合为统一的条件单元,支持多种任务的灵活组合。开源的 Wan2
BetterYeah AI是一个企业级AI智能体平台,通过简化AI Agent的开发流程,使企业能快速构建和部署AI应用。平台的核心产品能力包括零代码搭建Agent、一站式模型集成、知识库管理、数据库连接、可视化工作流(Flow)、丰富的官方插件(Plugin)、多模态ChatBot支持以及简单的开发运维工具。 BetterYeah AI的主要功能 零代码搭建Agent:允许用户无需编写代
Being-M0 基于业界首个百万级动作数据集 MotionLib,用创新的 MotionBook 编码技术,将动作序列转化为二维图像进行高效表示和生成。Being-M0 验证了大数据+大模型在动作生成领域的技术可行性,显著提升动作生成的多样性和语义对齐精度,实现从人体动作到多款人形机器人的高效迁移,为通用动作智能奠定基础。 Being-M0的主要功能 文本驱动动作生成:根据输入的自然语言
MSQA(Multi-modal Situated Question Answering)是大规模多模态情境推理数据集,提升具身AI代理在3D场景中的理解与推理能力。数据集包含251K个问答对,覆盖9个问题类别,基于3D场景图和视觉-语言模型在真实世界3D场景中收集。MSQA用文本、图像和点云的交错多模态输入,减少单模态输入的歧义。引入MSNN(Multi-modal Next-step Navi
Co-Sight是中兴通讯开源的超级智能体项目,为协同视觉分析平台及智能自动化底座。采用多智能体架构,构建“数字团队”协同体系,通过DAG任务引擎驱动,实现任务的高效调度与执行。Co-Sight具备自我进化能力,能通过执行记录与模型推理自动生成智能总结报告,形成持续改进闭环。注重安全与可靠性,所有操作在沙箱环境中运行,支持日志追溯、权限管控与合规审计。 Co-Sight的主要功能 智能总结
DICE-Talk是复旦大学联合腾讯优图实验室推出的新颖情感化动态肖像生成框架,支持生成具有生动情感表达且保持身份一致性的动态肖像视频。DICE-Talk引入情感关联增强模块,基于情感库捕获不同情感之间的关系,提升情感生成的准确性和多样性。框架设计情感判别目标,基于情感分类确保生成过程中的情感一致性。在MEAD和HDTF数据集上的实验表明,DICE-Talk在情感准确性、对口型和视觉质量方面均优于
BILIVE 是基于 AI 技术的开源工具,专为 B 站直播录制与处理设计。工具支持自动录制直播、渲染弹幕和字幕,支持语音识别、自动切片精彩片段,生成有趣的标题和风格化的视频封面。BILIVE 能自动将处理后的视频投稿至 B 站,综合多种模态模型,兼容超低配置机器,无需 GPU 即可运行,适合个人用户和小型服务器使用。 1. Introduction Have you notice
KuaiMod 是快手推出的基于多模态大模型的短视频质量判别框架,能高效识别和过滤有害及低质量内容。框架借鉴普通法(Common Law)体系,基于案例驱动的方式动态更新审核策略,快速适应短视频平台上内容的快速变化。KuaiMod 结合视觉语言模型(VLM)和链式推理(Chain-of-Thought,中 CoT)技术,基于用户反馈进行强化学习,实现精准的内容判别。KuaiMod 离线测试准确率高
一、核心技术:自学习和自修复的治疗引擎 PathOS Platform™是Pathos AI 的专有平台,构建于现代数据基础设施之上,能够自动化地进行靶点识别和优先级排序。 核心技术为自学习和自修复的Discovery Engine(发现引擎): 1、自动靶点识别:利用多种正交方法(orthogonal methods)自动识别和优先排序药物靶点。 2、自适应模型:能够根据新数据进行自我学
Translational360™ 整合了临床、基因组、转录组和全切片成像 (WSI) 等综合分子检测技术,旨在深入了解表型和基因组学。转录组学正日益成为生物制药转化科学的基础,帮助研究人员了解疾病的分子机制、患者反应的基础以及患者间差异,这对于开发新疗法至关重要。临床试验早期结果往往模棱两可,阳性和阴性反应各有不同。集成的数据解决方案和先进的人工智能技术,能够帮助研究人员选择成功率最高的项目,并
专长:精准医疗的联邦学习。Owkin 利用联邦学习技术,在保护数据隐私的同时,实现协作式 AI 研究。他们在肿瘤学和心脏病学领域的应用已构建出可指导个性化治疗决策的预测模型。Owkin 与领先医院和研究机构的合作进一步扩大了其影响力。 Owkin于2016年成立于法国巴黎,是一家AI驱动的精准医疗公司,由临床医师Thomas Clozel博士与生物学人工智能先驱Gilles Wainrib博士共
Terray Therapeutics 拥有一批高质量的实验数据,想要进一步训练自己的小分子化学基础模型,用生成式 AI 来解决复杂的药物发现问题,但稀缺的计算资源是他们面临的一大障碍。英伟达承诺,将为 Terray 提供 NVIDIA DGX™ Cloud 平台,利用 NVIDIA AI 软件堆栈和 NVIDIA 的全栈计算专业知识,协助 Terray 优化和扩展其基础模型的开发。
谷歌宣布开源全新医疗 AI 模型 ——MedGemma。这款基于 Gemma3架构的模型专为医疗领域设计,具备强大的多模态图像和文本理解能力,旨在提升医疗诊断与治疗效率。 MedGemma 提供两种配置选项,分别为4B 和27B 参数模型。4B 参数模型主要用于医疗图像的分类和解读,能够生成详细的诊断报告或回答与图像相关的问题;而27B 参数模型则专注于处理临床文本,特别适合于患者分诊和决策辅助
AnimeGamer 是基于多模态大型语言模型(MLLM)构建的,可以生成动态动画镜头和角色状态更新,为用户提供无尽的动漫生活体验。它允许用户通过开放式语言指令与动漫角色互动,创建独特的冒险故事。该产品的主要优点包括:动态生成与角色交互的动画,能够在不同动漫之间创建交互,丰富的游戏状态预测等。 快速入门 🔮 环境设置 要设置推理环境,您
昆仑万维面向全球市场,同步发布天工超级智能体(Skywork Super Agents)。这款产品采用了AI agent架构和deep research技术,能够一站式生成文档、PPT、表格(excel)、网页、播客和音视频多模态内容。它具有强大的deep research能力,在GAIA榜单上排名全球第一,超过了OpenAI Deep Research和Manus。 天工超级智能体(Skywo
MMaDA(Multimodal Large Diffusion Language Models)是普林斯顿大学、清华大学、北京大学和字节跳动推出的多模态扩散模型,支持跨文本推理、多模态理解和文本到图像生成等多个领域实现卓越性能。模型用统一的扩散架构,具备模态不可知的设计,消除对特定模态组件的需求,引入混合长链推理(CoT)微调策略,统一跨模态的CoT格式,推出UniGRPO,针对扩散基础模型的统
Sparkify是谷歌推出的AI动画视频生成工具,基于Gemini 2.5和Veo 2模型。用户输入问题或复杂概念后,Sparkify能在2分钟内生成直观的动画短视频,讲解知识点。Sparkify多模态处理能力结合Google Search数据,确保内容准确且与最新信息同步。Sparkify适用于教育、科普和企业培训等领域,提升理解效率和传播效果。Sparkify目前处于内测阶段,访问官网加入等候
Graphiti 是一个用于构建和查询时序感知知识图谱的框架,专为在动态环境中运行的 AI 代理量身定制。与传统的检索增强生成 (RAG) 方法不同,Graphiti 持续将用户交互、结构化和非结构化企业数据以及外部信息集成到一个连贯且可查询的图中。该框架支持增量数据更新、高效检索和精确的历史查询,无需完全重新计算图谱,因此非常适合开发交互式、情境感知的 AI 应用程序。 使用 Graphiti
Stitch 是谷歌实验室(Google Labs)推出的基于生成式AI工具。能将简单的英语描述或图像迅速转化为用户界面(UI)设计以及支持运行的前端代码。Stitch 基于 Gemini 2.5 Pro 模型的多模态能力,用户可以通过自然语言描述或上传视觉素材(如草图、截图、线框图等)生成UI设计。Stitch 能识别输入,快速生成多种设计选项,方便用户调整和优化。可以将生成的设计无缝粘贴到 F
BAGEL是字节跳动开源的多模态基础模型,拥有140亿参数,其中70亿为活跃参数。采用混合变换器专家架构(MoT),通过两个独立编码器分别捕捉图像的像素级和语义级特征。BAGEL遵循“下一个标记组预测”范式进行训练,使用海量多模态标记数据进行预训练,包括语言、图像、视频和网络数据。在性能方面,BAGEL在多模态理解基准测试中超越了Qwen2.5-VL和InternVL-2.5等顶级开源视觉语言模型
mPLUG-Owl3是阿里巴巴推出的通用多模态AI模型,专为理解和处理多图及长视频设计。在保持准确性的同时,显著提升了推理效率,能在4秒内分析完2小时电影。模型采用创新的Hyper Attention模块,优化视觉与语言信息的融合,支持多图场景和长视频理解。mPLUG-Owl3在多个基准测试中达到行业领先水平,其论文、代码和资源已开源,供研究和应用。 mPLUG-Owl3的主要功能 多
NVILA是NVIDIA推出的系列视觉语言模型,能平衡效率和准确性。模型用“先扩展后压缩”策略,有效处理高分辨率图像和长视频。NVILA在训练和微调阶段进行系统优化,减少资源消耗,在多项图像和视频基准测试中达到或超越当前领先模型的准确性,包括Qwen2VL、InternVL和Pixtral在内的多种顶尖开源模型,及GPT-4o和Gemini等专有模型。NVILA引入时间定位、机器人导航和医学成像等
只显示前20页数据,更多请搜索
Showing 25 to 48 of 85 results