关键词 "抗菌肽" 的搜索结果, 共 2 条, 只显示前 480 条
1. 本研究介绍了 PrefixProt,这是一个新颖的框架,它通过利用预训练蛋白质语言模型 (ProtLM) 上的前缀调整来实现可控蛋白质设计。它使用学习到的虚拟标记作为模块化控制标签,引导蛋白质生成朝着所需的结构和功能特性发展。 2. PrefixProt 最引人注目的特性在于它能够通过组合不同的虚拟标记来生成具有多种用户自定义属性(例如结构和功能)的蛋白质,而无需重新训练基础模型。这种组合
1. PDeepPP 通过将 ESM-2 蛋白质语言模型嵌入与混合 Transformer-CNN 架构融合,引入了统一的肽识别深度学习框架。该设计在各种生物信息学任务中均实现了高精度和可扩展性。 2. PDeepPP 在 33 项基准生物学任务中的表现显著优于先前的方法,包括抗菌、抗癌和糖基化位点识别。在抗菌肽检测中,其准确率达到 97.26%,PR AUC 为 0.9977,在抗疟药检测
只显示前20页数据,更多请搜索