关键词 "推理任务" 的搜索结果, 共 5 条, 只显示前 480 条
在本研究中,我们推出了 MiMo-7B 系列模型,这一系列模型从零开始训练,专为推理任务而生。我们基于 MiMo-7B-Base 进行的强化学习实验表明,我们的模型拥有非凡的推理潜力,甚至超越了规模更大的 32B 模型。此外,我们还对冷启动的 SFT 模型进行了强化学习训练,最终形成了 MiMo-7B-RL,它在数学和代码推理任务上均表现出色,性能堪比 OpenAI o1-mini。 我们开
英纬达发布了其最新的 Cosmos-Reason1系列模型,旨在提升人工智能在物理常识和具身推理方面的能力。随着人工智能在语言处理、数学及代码生成等领域取得显著进展,如何将这些能力扩展到物理环境中成为了一大挑战。 物理 AI(Physical AI)不同于传统的人工智能,它依赖于视频等感官输入,并结合现实物理法则来生成反应。物理 AI 的应用领域包括机器人和自动驾驶车辆等,需要具备常识推理能
MMaDA(Multimodal Large Diffusion Language Models)是普林斯顿大学、清华大学、北京大学和字节跳动推出的多模态扩散模型,支持跨文本推理、多模态理解和文本到图像生成等多个领域实现卓越性能。模型用统一的扩散架构,具备模态不可知的设计,消除对特定模态组件的需求,引入混合长链推理(CoT)微调策略,统一跨模态的CoT格式,推出UniGRPO,针对扩散基础模型的统
LLaDA-V是中国人民大学高瓴人工智能学院、蚂蚁集团推出的多模态大语言模型(MLLM),基于纯扩散模型架构,专注于视觉指令微调。模型在LLaDA的基础上,引入视觉编码器和MLP连接器,将视觉特征映射到语言嵌入空间,实现有效的多模态对齐。LLaDA-V在多模态理解方面达到最新水平,超越现有的混合自回归-扩散和纯扩散模型。 LLaDA-V的主要功能 图像描述生成:根据输入的图像生成详细的描述
MiniMax-M1是MiniMax团队最新推出的开源推理模型,基于混合专家架构(MoE)与闪电注意力机制(lightning attention)相结合,总参数量达 4560 亿,每个token激活 459 亿参数。模型超过国内的闭源模型,接近海外的最领先模型,具有业内最高的性价比。MiniMax-M1原生支持 100 万token的上下文长度,提供40 和80K两种推理预算版本,适合处理长输入
只显示前20页数据,更多请搜索