关键词 "推理模型" 的搜索结果, 共 10 条, 只显示前 480 条
Claude,美国人工智能初创公司Anthropic发布的大型语言模型家族,拥有高级推理、视觉分析、代码生成、多语言处理、多模态等能力,该模型对标ChatGPT、Gemini等产品。 2023年3月15日,Anthropic正式发布Claude的最初版本,并开始不断升级迭代;同年7月,Claude 2正式发布;同年11月,Claude 2.1正式发布;次年3月4日,Claude 3系列正式发布。
MAI-DS-R1 是 DeepSeek-R1 推理模型,经过微软 AI 团队的后期训练,提高了其对受阻主题的响应能力和风险状况,同时保持了其推理能力和竞争性能。基于 DeepSeek-R1,这是一种基于 Transformer 的自回归语言模型,利用多头自注意力和混合专家 (MoE) 进行可扩展和高效的推理。 MAI-DS-R1 是一个 DeepSeek-R1 推理模型,经过微软 AI 团
QwQ 是 Qwen 系列的推理模型。与传统的指令调优模型相比,QwQ 具备思考和推理能力,在下游任务,尤其是难题中能够取得显著的性能提升。QwQ-32B 是中型推理模型,其性能足以匹敌 DeepSeek-R1、o1-mini 等最先进的推理模型。 QwQ基于Qwen2.5开发,其代码已集成到最新的Hugging界面中transformers,建议您使用最新版本的transformers。 Q
在本研究中,我们推出了 MiMo-7B 系列模型,这一系列模型从零开始训练,专为推理任务而生。我们基于 MiMo-7B-Base 进行的强化学习实验表明,我们的模型拥有非凡的推理潜力,甚至超越了规模更大的 32B 模型。此外,我们还对冷启动的 SFT 模型进行了强化学习训练,最终形成了 MiMo-7B-RL,它在数学和代码推理任务上均表现出色,性能堪比 OpenAI o1-mini。 我们开
我们在 Lean 4 中引入了 DeepSeek-Prover-V2,这是一个专为形式化定理证明而设计的开源大型语言模型,其初始化数据通过 DeepSeek-V3 驱动的递归定理证明流程收集。冷启动训练过程首先促使 DeepSeek-V3 将复杂问题分解为一系列子目标。已解决子目标的证明被合成为一个思路链,并结合 DeepSeek-V3 的逐步推理,为强化学习创建初始冷启动。这一过程使我们能够将非
RWKV开源发布了 RWKV7-G1 1.5B 推理模型(Reasoning Model)。模型基于 World v3.5 数据集训练,包含更多小说、网页、数学、代码和 reasoning 数据,总数据为 5.16T tokens。其具备其它同尺寸模型不具备的推理能力和任务能力,同时还支持现实世界 100+ 种语言。 在实际测试中,RWKV7-G1 1.5B 模型的推理逻辑性较强,能够完成有难度的
ContextGem:轻松从文档中提取 LLM ContextGem 是一个免费的开源 LLM 框架,它可以让您以最少的代码更轻松地从文档中提取结构化数据和见解。 💎 为什么选择 Contex
MSQA(Multi-modal Situated Question Answering)是大规模多模态情境推理数据集,提升具身AI代理在3D场景中的理解与推理能力。数据集包含251K个问答对,覆盖9个问题类别,基于3D场景图和视觉-语言模型在真实世界3D场景中收集。MSQA用文本、图像和点云的交错多模态输入,减少单模态输入的歧义。引入MSNN(Multi-modal Next-step Navi
WebThinker是中国人民大学、北京智源人工智能研究院和华为泊松实验室等机构提出的深度研究智能体。WebThinker赋能大型推理模型(LRMs)在推理过程中自主进行网络搜索、网页导航和报告撰写。WebThinker基于深度网页探索器和自主思考、搜索、写作策略,让LRMs能动态获取信息,实时生成高质量研究报告。WebThinker基于强化学习的训练策略进一步优化工具使用效率。WebThinke
类似 Manus 但基于 Deepseek R1 Agents 的本地模型。 Manus AI 的本地替代品,它是一个具有语音功能的大语言模型秘书,可以 Coding、访问你的电脑文件、浏览网页,并自动修正错误与反省,最重要的是不会向云端传送任何资料。采用 DeepSeek R1 等推理模型构建,完全在本地硬体上运行,进而保证资料的隐私。 Features: 100% 本机运行:
只显示前20页数据,更多请搜索