关键词 "推理" 的搜索结果, 共 24 条, 只显示前 480 条
RWKV开源发布了 RWKV7-G1 1.5B 推理模型(Reasoning Model)。模型基于 World v3.5 数据集训练,包含更多小说、网页、数学、代码和 reasoning 数据,总数据为 5.16T tokens。其具备其它同尺寸模型不具备的推理能力和任务能力,同时还支持现实世界 100+ 种语言。 在实际测试中,RWKV7-G1 1.5B 模型的推理逻辑性较强,能够完成有难度的
苹果 FastVLM 的模型让你的 iPhone 瞬间拥有了“火眼金睛”,不仅能看懂图片里的各种复杂信息,还能像个段子手一样跟你“贫嘴”!而且最厉害的是,它速度快到飞起,苹果官方宣称,首次给你“贫嘴”的速度比之前的一些模型快了足足85倍!这简直是要逆天啊! 视觉语言模型的 “成长烦恼” 现在的视觉语
Muyan-TTS,一款低成本、具备良好二次开发支持的模型并完全开源,以方便学术界和小型应用团队的音频技术爱好者。 当前开源的Muyan-TTS版本由于训练数据规模有限,致使其仅对英语语种呈现出良好的支持效果。不过,得益于与之同步开源的详尽训练方法,从事相关行业的开发者能够依据自身实际业务场景,灵活地对Muyan-TTS进行功能升级与定制化改造。 01. H
ContextGem:轻松从文档中提取 LLM ContextGem 是一个免费的开源 LLM 框架,它可以让您以最少的代码更轻松地从文档中提取结构化数据和见解。 💎 为什么选择 Contex
字节开源DreamO,统一图像定制框架,把图像换装、换脸、换造型、换风格以及组合操作装在了一起 支持ID、IP、Try-On等组合,支持16GB/24GB显卡运行,用于虚拟试穿、商品广告、营销广告什么的比较实用 四个能力: IP,处理角色形象,支持人物、物体、动物等输入 ID,人脸身份处理 Try-On,虚拟试穿,可以同时换多件衣服 Style,风格迁移,目前还不能和其他任务组合 DreamO正
昆仑万维正式开源(17B+)Matrix-Game大模型,即Matrix-Zero世界模型中的可交互视频生成大模型。Matrix-Game是Matrix系列在交互式世界生成方向的正式落地,也是工业界首个开源的10B+空间智能大模型,它是一个面向游戏世界建模的交互式世界基础模型,专为开放式环境中的高质量生成与精确控制而设计。 空间智能作为AI时代的重要前沿技术,正在重塑我们与虚拟世界的
Nexus-Gen:图像理解、生成和编辑的统一模型,开源届的GPT-4o平替 待办事项 发布训练和推理代码。 发布模型检查点。 发布技术报告。 发布训练数据集。 什么是Nexus-Gen Nexus-Gen 是一个统一模型,它将 LLM 的语言推理能力与扩散模型的图像合成能力协同起来。为了对齐 LLM 和扩散模型的嵌入
Step1X-3D是什么 Step1X-3D 是StepFun联合LightIllusions推出的高保真、可控的 3D 资产生成框架。基于严格的数据整理流程,从超过 500 万个 3D 资产中筛选出 200 万个高质量数据,创建标准化的几何和纹理属性数据集。Step1X-3D 支持多模态条件输入,如文本和语义标签,基于低秩自适应(LoRA)微调实现灵活的几何控制。Step1X-3D 推动了 3
DreamFit是什么 DreamFit是字节跳动团队联合清华大学深圳国际研究生院、中山大学深圳校区推出的虚拟试衣框架,专门用在轻量级服装为中心的人类图像生成。框架能显著减少模型复杂度和训练成本,基于优化文本提示和特征融合,提高生成图像的质量和一致性。DreamFit能泛化到各种服装、风格和提示指令,生成高质量的人物图像。DreamFit支持与社区控制插件的无缝集成,降低使用门槛。 Dre
TinyVLA是一种面向机器人操控的视觉-语言-动作(VLA)模型,由华东师范大学和上海大学团队推出。针对现有VLA模型的不足,如推理速度慢和需要大量数据预训练,提出解决方案。TinyVLA基于轻量级的多模态模型和扩散策略解码器,显著提高推理速度,减少对大规模数据集的依赖。模型在模拟和真实机器人平台上经过广泛测试,证明在速度、数据效率以及多任务学习和泛化能力方面优于现有的先进模型OpenVLA。T
MSQA(Multi-modal Situated Question Answering)是大规模多模态情境推理数据集,提升具身AI代理在3D场景中的理解与推理能力。数据集包含251K个问答对,覆盖9个问题类别,基于3D场景图和视觉-语言模型在真实世界3D场景中收集。MSQA用文本、图像和点云的交错多模态输入,减少单模态输入的歧义。引入MSNN(Multi-modal Next-step Navi
Co-Sight是中兴通讯开源的超级智能体项目,为协同视觉分析平台及智能自动化底座。采用多智能体架构,构建“数字团队”协同体系,通过DAG任务引擎驱动,实现任务的高效调度与执行。Co-Sight具备自我进化能力,能通过执行记录与模型推理自动生成智能总结报告,形成持续改进闭环。注重安全与可靠性,所有操作在沙箱环境中运行,支持日志追溯、权限管控与合规审计。 Co-Sight的主要功能 智能总结
ViLAMP(VIdeo-LAnguage Model with Mixed Precision)是蚂蚁集团和中国人民大学联合推出的视觉语言模型,专门用在高效处理长视频内容。基于混合精度策略,对视频中的关键帧保持高精度分析,显著降低计算成本提高处理效率。ViLAMP在多个视频理解基准测试中表现出色,在长视频理解任务中,展现出显著优势。ViLAMP能在单张A100 GPU上处理长达1万帧(约3小时)
腾讯混元图像2.0模型(Hunyuan Image2.0),AI图像生成进入“毫秒级”时代。 模型主要有两大特点:实时生图、超写实画质。 (👇https://hunyuan.tencent.com/) 速度快 相比前代模型,腾讯混元图像2.0模型参数量提升了一个数量级,得益于超高压缩倍率的图像编解码器以及全新扩散架构,其生图速度显著快于行业领先模型,在同类商业产品每张图推理速度需要5到
BILIVE 是基于 AI 技术的开源工具,专为 B 站直播录制与处理设计。工具支持自动录制直播、渲染弹幕和字幕,支持语音识别、自动切片精彩片段,生成有趣的标题和风格化的视频封面。BILIVE 能自动将处理后的视频投稿至 B 站,综合多种模态模型,兼容超低配置机器,无需 GPU 即可运行,适合个人用户和小型服务器使用。 1. Introduction Have you notice
SuperEdit是字节跳动智能创作团队和佛罗里达中央大学计算机视觉研究中心联合推出的指令引导图像编辑方法,基于优化监督信号提高图像编辑的精度和效果。SuperEdit基于纠正编辑指令,与原始图像和编辑图像对更准确地对齐,引入对比监督信号,进一步优化模型训练。SuperEdit不需要额外的视觉语言模型(VLM)或预训练任务,仅依赖高质量的监督信号,在多个基准测试中实现显著的性能提升。 Super
FunGPT 是基于 InternLM2.5 系列大模型开发的开源项目,专为情感调节设计。具备两大核心功能:甜言蜜语模式和犀利怼语模式。甜言蜜语模式能用温暖的话语和独特的夸奖提升用户心情,犀利怼语模式以幽默风趣的方式帮助用户释放压力。FunGPT 采用 1.8B 系列轻量化模型,结合 AWQ 量化技术,既节省 GPU 内存又提升推理速度。 FunGPT的主要功能 甜言蜜语模式:当用户情绪低
KuaiMod 是快手推出的基于多模态大模型的短视频质量判别框架,能高效识别和过滤有害及低质量内容。框架借鉴普通法(Common Law)体系,基于案例驱动的方式动态更新审核策略,快速适应短视频平台上内容的快速变化。KuaiMod 结合视觉语言模型(VLM)和链式推理(Chain-of-Thought,中 CoT)技术,基于用户反馈进行强化学习,实现精准的内容判别。KuaiMod 离线测试准确率高
WebThinker是中国人民大学、北京智源人工智能研究院和华为泊松实验室等机构提出的深度研究智能体。WebThinker赋能大型推理模型(LRMs)在推理过程中自主进行网络搜索、网页导航和报告撰写。WebThinker基于深度网页探索器和自主思考、搜索、写作策略,让LRMs能动态获取信息,实时生成高质量研究报告。WebThinker基于强化学习的训练策略进一步优化工具使用效率。WebThinke
类似 Manus 但基于 Deepseek R1 Agents 的本地模型。 Manus AI 的本地替代品,它是一个具有语音功能的大语言模型秘书,可以 Coding、访问你的电脑文件、浏览网页,并自动修正错误与反省,最重要的是不会向云端传送任何资料。采用 DeepSeek R1 等推理模型构建,完全在本地硬体上运行,进而保证资料的隐私。 Features: 100% 本机运行:
美团正在加速其 AI 战略布局,即将推出一款名为 “NoCode” 的 AI 编程工具,并已悄然注册了 “nocode.cn” 域名,目前该网站正处于灰度测试阶段,预示这款面向非技术用户的全新产品即将正式面世。 该工具由美团研发质量与效率团队打造,定位于新兴的 “Vibe Coding(氛围编程)” 赛道,通过对话式交互实现应用构建,主打 “人人可用” 的 AI 编程体验。 不同于 Curso
英纬达发布了其最新的 Cosmos-Reason1系列模型,旨在提升人工智能在物理常识和具身推理方面的能力。随着人工智能在语言处理、数学及代码生成等领域取得显著进展,如何将这些能力扩展到物理环境中成为了一大挑战。 物理 AI(Physical AI)不同于传统的人工智能,它依赖于视频等感官输入,并结合现实物理法则来生成反应。物理 AI 的应用领域包括机器人和自动驾驶车辆等,需要具备常识推理能
谷歌宣布开源全新医疗 AI 模型 ——MedGemma。这款基于 Gemma3架构的模型专为医疗领域设计,具备强大的多模态图像和文本理解能力,旨在提升医疗诊断与治疗效率。 MedGemma 提供两种配置选项,分别为4B 和27B 参数模型。4B 参数模型主要用于医疗图像的分类和解读,能够生成详细的诊断报告或回答与图像相关的问题;而27B 参数模型则专注于处理临床文本,特别适合于患者分诊和决策辅助
AnimeGamer 是基于多模态大型语言模型(MLLM)构建的,可以生成动态动画镜头和角色状态更新,为用户提供无尽的动漫生活体验。它允许用户通过开放式语言指令与动漫角色互动,创建独特的冒险故事。该产品的主要优点包括:动态生成与角色交互的动画,能够在不同动漫之间创建交互,丰富的游戏状态预测等。 快速入门 🔮 环境设置 要设置推理环境,您
只显示前20页数据,更多请搜索
Showing 25 to 48 of 69 results