关键词 "自回归" 的搜索结果, 共 5 条, 只显示前 480 条
多语言医学语料库 MMedC。该语料库涵盖六种主要语言、约 255 亿标记,并用于通用大语言模型的自回归训练和领域适配。同时,研究者开发了具有推理能力的多语言医学多选问答基准MMedBench,以评估多语言医学模型的性能。在此基础上,通过在 MMedC 上训练多个开源模型,研究者提出了多语言医学大模型MMed-Llama 3。该模型在MMedBench 和英语基准测试中表现出色,在推理能力和问答准确率方面均达到领先水平。
语料库数据集。为了实现多语言医学专用适配,我们构建了一个新的多语言医学语料库(MMedC),其中包含约 255 亿个标记,涵盖 6 种主要语言,可用于对现有的通用 LLM 进行自回归训练。 基准。为了监测医学领域多语言法学硕士 (LLM) 的发展,我们提出了一个新的、具有合理性的多语言医学多项选择题答疑基准,称为 MMedBench。 模型评估。我们在基准测试中评估了许多流行的 LLM,以及在 MMedC 上进一步进行自回归训练的模型。最终,我们最终的模型(称为 MMedLM 2)仅具有 70 亿个参数,与所有其他开源模型相比,其性能更为卓越,甚至可以与 MMedBench 上的 GPT-4 相媲美。
国产 Magi-1,在物理真实性上,断层第一,能够无限制生成长视频。 它采用的是一种叫做 chunk-by-chunk 的自回归生成 方法。视频被划分为一个个时间片段(chunk),每段比如 24 帧,相当于 1 秒的视频。 每生成一段,才会进入下一段。下一段的内容,要基于上一段的内容来生成。Magi-1 的结构不是从 Diffusion Transformer 拿过来直接用,而是在 attention、FFN、条件编码、位置编码上都做了大量改进。它让视频生成这件事,从“像画图一样生成结果”, 变成了“像连续剧一样,一集一集生成”。
sand.ai是清华大学曹越教授团队创立的视频生成AI平台,目前刚刚开源了全球首个自回归扩散视频生成模型 Magi-1 ,生成长视频效果在行业领先。 马尔奖、清华特奖得主曹越的创业公司 Sand AI 推出了自己的视频生成大模型 ——MAGI-1,该模型权重和代码完全开源,支持无限生成,能将生成时长精确控制到每一秒,在基准测试中更是吊打 Sora,领先了 5 倍。
MAI-DS-R1 是 DeepSeek-R1 推理模型,经过微软 AI 团队的后期训练,提高了其对受阻主题的响应能力和风险状况,同时保持了其推理能力和竞争性能。基于 DeepSeek-R1,这是一种基于 Transformer 的自回归语言模型,利用多头自注意力和混合专家 (MoE) 进行可扩展和高效的推理。 MAI-DS-R1 是一个 DeepSeek-R1 推理模型,经过微软 AI 团队的后期训练,旨在填补先前版本模型中的信息空白,并提升其风险状况,同时保持 R1 推理能力。该模型使用来自Tulu 3 SFT 数据集的 11 万个安全和不合规示例进行训练,此外还使用了内部开发的约 35 万个多语言示例数据集,该数据集涵盖了各种存在偏差的主题。 MAI-DS-R1 成功解锁了原始 R1 模型中大多数先前被阻止的查询,同时在相关安全基准测试中超越了近期发布的 R1-1776 模型(由 Perplexity 进行后训练)。这些结果的实现同时保留了原始 DeepSeek-R1 的通用推理能力。
只显示前20页数据,更多请搜索