关键词 "蛋白质" 的搜索结果, 共 24 条, 只显示前 480 条
Cradle platform speeds up protein design with AI algorithms. 重点领域:治疗学、诊断学、食品、化学品和农业 主要合作伙伴:诺和诺德、强生、Grifols 和 Twist Biosciences 最新消息:B 轮融资7300 万美元 Cradle Bio 使用生成式 AI 帮助生物学家设计改良蛋白质
MAPS(用于空间生物学中蛋白质组学分析的机器学习),这是一种机器学习方法,能够从空间蛋白质组学数据中快速、精确地识别细胞类型,并达到人类水平的精度。经多个内部和公开的 MIBI 和 CODEX 数据集验证,MAPS 在速度和精度方面均优于现有的注释技术,即使对于通常具有挑战性的细胞类型(包括免疫来源的肿瘤细胞),也能达到病理学家级别的精度。通过实现快速部署和可扩展的机器学习注释的普及,MAPS
技术:药物-脂质结合纳米分散体 疾病领域:肿瘤学、神经病学和罕见疾病 最新消息:与牛津大学建立为期五年的合作伙伴关系,共同开发新型蛋白质降解技术 BPGbio 被生物技术突破奖 (BioTech Breakthrough Awards)评为2024 年度“年度生物技术 AI 公司”。该公司拥有一个名为 NAi Interrogative Biology 的 AI 平台,该平台利用全球
技术:小分子 疾病领域:炎症和自身免疫性疾病、肿瘤学和肥胖症 最新消息:获得 EIC Accelerator 提供的 250 万欧元(270 万美元)资助 Iktos总部位于巴黎,致力于利用人工智能和机器人合成自动化技术进行药物研发和设计,快速识别可作为临床候选药物的小分子。通过运用人工智能,Iktos 旨在加快药物研发进程,同时提高候选药物进入临床开发阶段的成功率。Iktos 已
药物研发合作:礼来公司和诺华公司 近期成果:与谷歌DeepMind联合开发AlphaFold3 近期新闻:扩大与诺华的小分子药物发现协议范围 作为著名人工智能研究实验室 Google Deepmind 的姊妹公司,Isomorphic Labs 致力于开发深度学习、强化学习、主动学习、表征学习等领域的尖端计算技术,以解决药物研发中最棘手的一些挑战,以及当今生物、化学和医学研究中一
领先资产技术:抗TSLP抗体 疾病领域: 免疫学、传染病和免疫肿瘤学 最新消息:与诺华公司合作发现和开发蛋白质疗法 自2020年崭露头角以来,Generate Biomedicines作为生成生物学领域的领导者,取得了显著进展,利用人工智能发现和开发创新型候选药物。该公司的人工智能技术名为Generate平台,该平台以连续循环的方式运行,生成蛋白质序列以解答特定的治疗问题,将计算生
技术:设计治疗性蛋白质 商业模式:合作驱动 最新消息:A轮融资4000万美元 就在上个月,Latent Labs在 A 轮融资中筹集了4000 万美元,成为众人焦点。巧合的是,该公司也是由 Simon Kohl 创立的,Simon Kohl 是屡获殊荣的 AI 模型 AlphaFold 开发过程中的重要人物。然而,由于 AlphaFold 并非旨在从零开始创造新型蛋白质,Late
技术:PI3Kα抑制剂 重大并购活动:收购 ZebiAI 及其机器学习-DEL 技术 最新消息:在PIPE融资轮中获得3000万美元 Relay Therapeutics 的 Dynamo 平台集成了一系列计算和实验方法,旨在针对此前难以解决或未得到充分解决的蛋白质靶点进行药物治疗。为了配合自身的技术,Relay 还于 2021 年收购了ZebiAI 及其机器学习-DEL(ML-DE
专长:人工智能和量子力学。XtalPi 将量子物理学与人工智能相结合,预测分子特性并优化候选药物。其 ID4 平台通过提供对溶解度、稳定性和生物利用度的洞察,加速临床前开发。与辉瑞等制药巨头的合作凸显了 XtalPi 在计算化学领域的实力。 XtalPi,又名 QuantumPharm,由三位来自麻省理工学院 (MIT) 的物理学家创立,其许多研究业务在中国开展。该公司融合了量子物理、人工智
专长:RNA 疗法的基因洞察。Deep Genomics 利用人工智能解码基因组数据,并识别 RNA 疗法的靶点。其专有平台 SPIDEX 已为罕见遗传疾病的治疗开发出有前景的候选药物。Deep Genomics 在利用人工智能设计下一代 RNA 药物方面处于领先地位。 2015年,Brendan Frey与Hannes Bretschneider等人成立了Deep Genomics。公司有20
专长:肽类药物的人工智能和量子计算。ProteinQure 应用量子计算设计肽类疗法,专注于免疫肿瘤学和代谢疾病。他们的人工智能工具能够提高肽类药物的稳定性和疗效,从而解决药物研发中的关键挑战。 ProteinQure成立于2017年,总部位于多伦多,将量子计算、强化学习和原子模拟相结合,设计新型蛋白质药物。利用这些混合技术,他们模拟了蛋白质折叠等基本过程,以及生物分子之间相互作用的基础物理学。
Model Medicines 拥有人工智能药物研发公司中公开研发管线规模最大的公司之一。该公司拥有 192 种化合物,针对 26 个治疗靶点。所有化合物均通过该公司的 GALILEO 平台发现,该平台旨在研究 3D 蛋白质结构中相互作用的原子“群”。 今年4月,Model及其合作伙伴的研究团队发布了一份预印本,确定了RdRp Thumb-1位点,该位点代表了正义单链RNA病毒中一个潜在的可用药
AbSci创立于2011年,总部位于美国华盛顿州Vancouver,是一家合成生物学公司,通过重新发明生物制药药物发现过程的平台技术将想法转化为药物,为蛋白质和生物制剂的发现和开发提供了平台. Absci 是一家数据优先的生成式 AI 药物研发公司,致力于通过生成式 AI 解锁全新生物学领域。我们的 Integrated Drug Creation™ 平台支持尖端的从头AI 和先导化
唯信(Wecomput™)致力于用计算技术驱动创新药研发、造福人类健康。 Wecomput融合人工智能、生物物理、高性能计算、生成生物学等技术,打造了独具特色的药物分子生成、设计与模拟平台,并致力于革新传统药物发现方式,驱动蛋白质、抗体、mRNA等创新药物的研发进程。核心团队成员来自国际知名AI制药公司、头部药企、知名互联网公司、985高校,在制药、生命科学、人工智能、软件开发等交叉领域有丰富的
AlphaFold 是 DeepMind 开源的人工智能系统,借助 AlphaFold 可以更加准确的预测蛋白质的形状。主要应用于医疗保健和生命科学领域,有可能加速药物的研究与发现。 AlphaFold到底厉害在哪里?它的核心武器叫做“深度学习”,简单来说,就是让AI自己去学习成千上万个已知的蛋白质结构,从中找出隐藏的规律。更重要的是,AlphaFold引入了一种叫做“进化信息”的数据,分析
2021年7月,谷歌旗下DeepMind团队和欧洲生物信息研究所(EMBL-EBI)合作,发布由人工智能系统AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。这一数据库包含了AlphaFold人工智能系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物(大肠杆菌、果蝇、斑马鱼、小鼠…)。在人类蛋白质组方面,A
Chai-2,这是分子设计领域的一项重大突破。Chai-2 在设计完全从头抗体时实现了前所未有的两位数成功率,与以往方法相比,命中率提高了几个数量级。只需测试 20 个设计,该模型就能在各种靶点中轻松找到可行的匹配方案。该模型的高成功率和广泛的泛化能力为快速精准的原子级分子工程新时代铺平了道路。 我们挑战 Chai-2 设计多达 20 种抗体或纳米抗体,以针对 52 个不同的蛋白靶点,所有这些靶
深度生成序列模型的归因分配使得仅使用正数据进行可解释性分析成为可能 1.本文介绍了 GAMA(生成归因度量分析),这是第一个基于积分梯度的归因方法,适用于仅基于正样本数据训练的自回归生成模型。即使没有负样本,GAMA 也能解释此类生成模型所学习的特征。 2.与大多数为监督学习开发的可解释性工具不同,GAMA 适用于单类生成模型,例如长短期记忆(LSTM),这类模型常用于抗体设计,因为负样本(非
1. 本研究介绍了 PrefixProt,这是一个新颖的框架,它通过利用预训练蛋白质语言模型 (ProtLM) 上的前缀调整来实现可控蛋白质设计。它使用学习到的虚拟标记作为模块化控制标签,引导蛋白质生成朝着所需的结构和功能特性发展。 2. PrefixProt 最引人注目的特性在于它能够通过组合不同的虚拟标记来生成具有多种用户自定义属性(例如结构和功能)的蛋白质,而无需重新训练基础模型。这种组合
1.PRO-LDM 引入了一种模块化潜在扩散模型,用于全长蛋白质序列设计,该模型兼具无条件生成和功能优化,将准确性与计算效率完美结合。 2. 一项重大创新在于在潜在空间中应用扩散,显著降低采样成本,同时保持生成序列的保真度和多样性。 3. PRO-LDM 通过将条件潜在扩散与监督适应度预测相结合,实现了具有目标特性(例如荧光、溶解度、热/化学稳定性)的蛋白质序列的可控设计。 4. 通过无分类
1. PDeepPP 通过将 ESM-2 蛋白质语言模型嵌入与混合 Transformer-CNN 架构融合,引入了统一的肽识别深度学习框架。该设计在各种生物信息学任务中均实现了高精度和可扩展性。 2. PDeepPP 在 33 项基准生物学任务中的表现显著优于先前的方法,包括抗菌、抗癌和糖基化位点识别。在抗菌肽检测中,其准确率达到 97.26%,PR AUC 为 0.9977,在抗疟药检测
MegaFold是一个跨平台系统,用于加速蛋白质结构预测模型(例如 AlphaFold3、AlphaFold2)。 为什么选择 MegaFold? 跨平台支持:通过优化的基于 Triton 的内核,支持在异构设备上执行,包括 NVIDIA GPU 和 AMD GPU。 易于使用:只需更改几行代码即可获得巨大的性能提升 速度提升:每次迭代训练时间加快高达 1.73 倍 减少内存:将
1.本研究提出了蛋白质折叠进化模拟器(PFES),这是一个从随机氨基酸序列开始,以原子分辨率模拟蛋白质进化的计算框架。 2.作者利用PFES证明,稳定的球状蛋白质折叠可以相对容易地从随机序列进化而来,每个位点只需0.2到3个突变,与LUCA以来观察到的进化变化相当或更少。 3.值得注意的是,大约一半进化出的蛋白质与已知的自然折叠(例如HTH、SH3和β三明治)相似,而其余的则是独一无二的,这凸
1.codonGPT引入了第一个直接在编码mRNA序列(密码子)上训练的生成语言模型,解决了基于RNA的序列建模中一个主要问题,该问题一直落后于DNA和蛋白质建模的进展。 2.一项关键创新是使用推理时间同义逻辑掩蔽,确保生成的密码子序列以100%的保真度保留原始氨基酸序列,这对于治疗应用至关重要。 3.强化学习(RL)首次在codonGPT的基础上用于优化特定蛋白质的密码子序列。这允许用户跨
只显示前20页数据,更多请搜索