关键词 "论文" 的搜索结果, 共 24 条, 只显示前 480 条
Smodin is a platform that improves writing with various tools for students, writers, and internet workers globally.
AI-powered writing and research assistant
Study resources, notes, test prep, homework help, and expert tutors at your fingertips.
DeTikZify是一款创新工具,专为科学家、学者以及任何需要创建精准数学或科学插图的人设计。它基于先进的语言模型,能够理解手绘草图或现有图片,并转换它们成为可直接用于LaTeX文档的TikZ代码,这一过程无需手动编码,大大节省了时间并提高了效率。 项目技术分析 该系统利用深度学习与蒙特卡洛树搜索(MCTS)的巧妙结合,实现智能迭代优化输出。这意味着,即使初始生成可能不完美,DeTikZi
斯坦福大学在AI辅助学术研究领域取得了重大进展,他们的开源工具STORM进化后新增了协作对话机制Co-STORM。这一先进功能使得AI实体能够参与圆桌讨论,模拟人类般的互动。Co-STORM通过整合多个AI专家和一个主持人,在几分钟内生成关于特定主题的深入、经过充分研究的文章,同时具备跟踪和参与对话的能力,通过动态思维导图展示。该工具生成具有多元视角的详细报告,并且可在线免费获取,对研究人员和学生
提示工程指南 提示词工程(Prompt Engineering)是一门较新的学科,关注提示词开发和优化,帮助用户将大语言模型(Large Language Model, LLM)用于各场景和研究领域。 掌握了提示工程相关技能将有助于用户更好地了解大型语言模型的能力和局限性。 研究人员可利用提示工程来提升大语言模型处理复杂任务场景的能力,如问答和算术推理能力。开发人员可通过提示工程设计、研发
Paper2Code:机器学习中科学论文的自动代码生成 PaperCoder是一个多智能体 LLM 系统,可将论文转化为代码库。它遵循三阶段流程:规划、分析和代码生成,每个阶段均由专门的智能体处理。 我们的方法在 Paper2Code 和 PaperBench 上的表现均优于强大的基准测试,并能生成忠实、高质量的实现。
PapertoCode 是一款专业的 AI 工具,旨在将研究论文方法论直接转化为可执行的 Python 代码。PapertoCode 的核心目标是简化开发者和研究人员将前沿研究成果付诸实践的流程。其实现方式是分析研究论文的实施部分,提取关键方法论,并将其转换为可立即使用的 Python 代码。例如,如果一篇论文描述了一种用于图像分类的新型机器学习模型,包括数据预处理步骤、模型架构、训练流程和评估指
"暴躁教授读论文"是一个学术论文阅读伴侣应用程序,旨在通过富有个性的AI助手提高论文阅读效率。它集成了PDF处理、AI翻译、RAG检索、AI问答和语音交互等多种功能,为学术研究者提供一站式的论文阅读解决方案。 主要特性 论文自动处理:导入PDF后自动提取、翻译和结构化论文内容 双语显示:支持中英文对照阅读论文 AI智能问答:与论文内容结合,提供专业的解释和分析 个性化AI教授:AI以"暴
空间语音翻译:利用双耳可听设备进行跨空间翻译 🗣️ 空间语音翻译 CHI 2025 论文“空间语音翻译:利用双耳可听设备进行跨空间翻译”的官方仓库 Youtube 视频演示: 💡 功能 我们首先实现多说话人和干扰条件下的语音翻译。 我们的同步和富有表现力的语音翻译模型可以在 Apple 芯片上实时运行。 首先,语音翻译的双耳渲染可以保留从输入到翻译输出的空间提示。 📑 开源
苹果 FastVLM 的模型让你的 iPhone 瞬间拥有了“火眼金睛”,不仅能看懂图片里的各种复杂信息,还能像个段子手一样跟你“贫嘴”!而且最厉害的是,它速度快到飞起,苹果官方宣称,首次给你“贫嘴”的速度比之前的一些模型快了足足85倍!这简直是要逆天啊! 视觉语言模型的 “成长烦恼” 现在的视觉语
字节开源DreamO,统一图像定制框架,把图像换装、换脸、换造型、换风格以及组合操作装在了一起 支持ID、IP、Try-On等组合,支持16GB/24GB显卡运行,用于虚拟试穿、商品广告、营销广告什么的比较实用 四个能力: IP,处理角色形象,支持人物、物体、动物等输入 ID,人脸身份处理 Try-On,虚拟试穿,可以同时换多件衣服 Style,风格迁移,目前还不能和其他任务组合 DreamO正
Step1X-3D是什么 Step1X-3D 是StepFun联合LightIllusions推出的高保真、可控的 3D 资产生成框架。基于严格的数据整理流程,从超过 500 万个 3D 资产中筛选出 200 万个高质量数据,创建标准化的几何和纹理属性数据集。Step1X-3D 支持多模态条件输入,如文本和语义标签,基于低秩自适应(LoRA)微调实现灵活的几何控制。Step1X-3D 推动了 3
DreamFit是什么 DreamFit是字节跳动团队联合清华大学深圳国际研究生院、中山大学深圳校区推出的虚拟试衣框架,专门用在轻量级服装为中心的人类图像生成。框架能显著减少模型复杂度和训练成本,基于优化文本提示和特征融合,提高生成图像的质量和一致性。DreamFit能泛化到各种服装、风格和提示指令,生成高质量的人物图像。DreamFit支持与社区控制插件的无缝集成,降低使用门槛。 Dre
TinyVLA是一种面向机器人操控的视觉-语言-动作(VLA)模型,由华东师范大学和上海大学团队推出。针对现有VLA模型的不足,如推理速度慢和需要大量数据预训练,提出解决方案。TinyVLA基于轻量级的多模态模型和扩散策略解码器,显著提高推理速度,减少对大规模数据集的依赖。模型在模拟和真实机器人平台上经过广泛测试,证明在速度、数据效率以及多任务学习和泛化能力方面优于现有的先进模型OpenVLA。T
IFAdapter是一种新型的文本到图像生成模型,由腾讯和新加坡国立大学共同推出。提升生成含有多个实例的图像时的位置和特征准确性。传统模型在处理多实例图像时常常面临定位和特征准确性的挑战,IFAdapter通过引入两个关键组件外观标记(Appearance Tokens)和实例语义图(Instance Semantic Map)解决问题。外观标记用于捕获描述中的详细特征信息,实例语义图则将特征与特
FaceShot是同济大学、上海 AI Lab和南京理工大学推出的新型无需训练的肖像动画生成框架。用外观引导的地标匹配模块和基于坐标的地标重定位模块,为各种角色生成精确且鲁棒的地标序列,基于潜在扩散模型的语义对应关系,跨越广泛的角色类型生成面部动作序列。将地标序列输入预训练的地标驱动动画模型生成动画视频。FaceShot突破对现实肖像地标的限制,适用于任何风格化的角色和驱动视频,或作为插件与任何地
AlphaEvolve是谷歌DeepMind推出的通用科学Agent,基于结合大型语言模型(LLMs)的创造力和自动评估器来设计和优化高级算法。用Gemini Flash和Gemini Pro两种模型,基于进化框架不断改进最有潜力的算法。AlphaEvolve在数据中心调度、硬件设计、AI训练和复杂数学问题解决等领域取得显著成果,优化矩阵乘法算法,提升数据中心效率,在多个开放数学问题上取得突破。A
WorldMem 是南洋理工大学、北京大学和上海 AI Lab 推出的创新 AI 世界生成模型。模型基于引入记忆机制,解决传统世界生成模型在长时序下缺乏一致性的关键问题。在WorldMem中,智能体在多样化场景中自由探索,生成的世界在视角和位置变化后能保持几何一致性。WorldMem 支持时间一致性建模,模拟动态变化(如物体对环境的影响)。模型在 Minecraft 数据集上进行大规模训练,在真实
Being-M0 基于业界首个百万级动作数据集 MotionLib,用创新的 MotionBook 编码技术,将动作序列转化为二维图像进行高效表示和生成。Being-M0 验证了大数据+大模型在动作生成领域的技术可行性,显著提升动作生成的多样性和语义对齐精度,实现从人体动作到多款人形机器人的高效迁移,为通用动作智能奠定基础。 Being-M0的主要功能 文本驱动动作生成:根据输入的自然语言
MSQA(Multi-modal Situated Question Answering)是大规模多模态情境推理数据集,提升具身AI代理在3D场景中的理解与推理能力。数据集包含251K个问答对,覆盖9个问题类别,基于3D场景图和视觉-语言模型在真实世界3D场景中收集。MSQA用文本、图像和点云的交错多模态输入,减少单模态输入的歧义。引入MSNN(Multi-modal Next-step Navi
HealthBench是OpenAI推出的开源医疗测试基准,用在评估大型语言模型(LLMs)在医疗保健领域的表现和安全性。HealthBench包含5000个模型与用户或医疗专业人员之间的多轮对话,用262名医生创建的对话特定评分标准进行评估。对话覆盖多种健康情境(如紧急情况、临床数据转换、全球健康)和行为维度(如准确性、指令遵循、沟通)。HealthBench能衡量模型的整体表现,按主题(如紧急
ViLAMP(VIdeo-LAnguage Model with Mixed Precision)是蚂蚁集团和中国人民大学联合推出的视觉语言模型,专门用在高效处理长视频内容。基于混合精度策略,对视频中的关键帧保持高精度分析,显著降低计算成本提高处理效率。ViLAMP在多个视频理解基准测试中表现出色,在长视频理解任务中,展现出显著优势。ViLAMP能在单张A100 GPU上处理长达1万帧(约3小时)
DICE-Talk是复旦大学联合腾讯优图实验室推出的新颖情感化动态肖像生成框架,支持生成具有生动情感表达且保持身份一致性的动态肖像视频。DICE-Talk引入情感关联增强模块,基于情感库捕获不同情感之间的关系,提升情感生成的准确性和多样性。框架设计情感判别目标,基于情感分类确保生成过程中的情感一致性。在MEAD和HDTF数据集上的实验表明,DICE-Talk在情感准确性、对口型和视觉质量方面均优于
只显示前20页数据,更多请搜索
Showing 193 to 216 of 309 results