关键词 "AlphaFold" 的搜索结果, 共 6 条, 只显示前 480 条
药物研发合作:礼来公司和诺华公司 近期成果:与谷歌DeepMind联合开发AlphaFold3 近期新闻:扩大与诺华的小分子药物发现协议范围 作为著名人工智能研究实验室 Google Deepmind 的姊妹公司,Isomorphic Labs 致力于开发深度学习、强化学习、主动学习、表征学习等领域的尖端计算技术,以解决药物研发中最棘手的一些挑战,以及当今生物、化学和医学研究中一
技术:设计治疗性蛋白质 商业模式:合作驱动 最新消息:A轮融资4000万美元 就在上个月,Latent Labs在 A 轮融资中筹集了4000 万美元,成为众人焦点。巧合的是,该公司也是由 Simon Kohl 创立的,Simon Kohl 是屡获殊荣的 AI 模型 AlphaFold 开发过程中的重要人物。然而,由于 AlphaFold 并非旨在从零开始创造新型蛋白质,Late
AlphaFold 是 DeepMind 开源的人工智能系统,借助 AlphaFold 可以更加准确的预测蛋白质的形状。主要应用于医疗保健和生命科学领域,有可能加速药物的研究与发现。 AlphaFold到底厉害在哪里?它的核心武器叫做“深度学习”,简单来说,就是让AI自己去学习成千上万个已知的蛋白质结构,从中找出隐藏的规律。更重要的是,AlphaFold引入了一种叫做“进化信息”的数据,分析
2021年7月,谷歌旗下DeepMind团队和欧洲生物信息研究所(EMBL-EBI)合作,发布由人工智能系统AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。这一数据库包含了AlphaFold人工智能系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物(大肠杆菌、果蝇、斑马鱼、小鼠…)。在人类蛋白质组方面,A
MegaFold是一个跨平台系统,用于加速蛋白质结构预测模型(例如 AlphaFold3、AlphaFold2)。 为什么选择 MegaFold? 跨平台支持:通过优化的基于 Triton 的内核,支持在异构设备上执行,包括 NVIDIA GPU 和 AMD GPU。 易于使用:只需更改几行代码即可获得巨大的性能提升 速度提升:每次迭代训练时间加快高达 1.73 倍 减少内存:将
1.本研究提出了蛋白质折叠进化模拟器(PFES),这是一个从随机氨基酸序列开始,以原子分辨率模拟蛋白质进化的计算框架。 2.作者利用PFES证明,稳定的球状蛋白质折叠可以相对容易地从随机序列进化而来,每个位点只需0.2到3个突变,与LUCA以来观察到的进化变化相当或更少。 3.值得注意的是,大约一半进化出的蛋白质与已知的自然折叠(例如HTH、SH3和β三明治)相似,而其余的则是独一无二的,这凸
只显示前20页数据,更多请搜索