关键词 "Functional training" 的搜索结果, 共 3 条, 只显示前 480 条
文本到图像的扩散模型的最新进展已取得显著成功,但它们往往难以完全捕捉用户的意图。现有的使用文本输入结合边界框或区域蒙版的方法无法提供精确的空间引导,常常导致对象方向错位或意外。为了解决这些限制,我们提出了涂鸦引导扩散(ScribbleDiff),这是一种无需训练的方法,它利用用户提供的简单涂鸦作为视觉提示来引导图像生成。然而,将涂鸦纳入扩散模型存在挑战,因为涂鸦具有稀疏和单薄的特性,很难确保准确的
Experience revolutionary language learning through real-time conversation practice, instant grammar correction, pronunciation training, and personalized vocabulary building in 30+ languages.
CWM(Code World Model)是 Meta 开源的一个拥有 320 亿参数的代码语言模型。它率先将“世界模型”的概念引入代码生成领域,让模型能够通过模拟代码执行过程,更深层次地理解和生成代码,而不仅仅是基于模式匹配。CWM 在多项基准测试中表现出色,例如在 Math-500 数据集上取得了 96.6% 的准确率。该模型的权重已公开,旨在推动代码生成和理解领域的研究,并帮助开发者更高效地
只显示前20页数据,更多请搜索
Showing 457 to 459 of 459 results