关键词 "Medication guidance" 的搜索结果, 共 3 条, 只显示前 480 条
MMaDA(Multimodal Large Diffusion Language Models)是普林斯顿大学、清华大学、北京大学和字节跳动推出的多模态扩散模型,支持跨文本推理、多模态理解和文本到图像生成等多个领域实现卓越性能。模型用统一的扩散架构,具备模态不可知的设计,消除对特定模态组件的需求,引入混合长链推理(CoT)微调策略,统一跨模态的CoT格式,推出UniGRPO,针对扩散基础模型的统
全新的生成模型MeanFlow,最大亮点在于它彻底跳脱了传统训练范式——无须预训练、蒸馏或课程学习,仅通过一次函数评估(1-NFE)即可完成生成。 MeanFlow在ImageNet 256×256上创下3.43 FID分数,实现从零开始训练下的SOTA性能。 图1(上):在ImageNet 256×256上从零开始的一步生成结果 在ImageNet 256×25
MAGREF(Masked Guidance for Any‑Reference Video Generation)是字节跳动推出的多主体视频生成框架。MAGREF仅需一张参考图像和文本提示,能生成高质量、主体一致的视频,支持单人、多人及人物与物体、背景的复杂交互场景。基于区域感知动态掩码和像素级通道拼接机制,MAGREF能精准复刻身份特征,保持视频中人物、物体和背景的协调性与一致性,适用内容创作
只显示前20页数据,更多请搜索
Showing 169 to 171 of 171 results