关键词 "SFT" 的搜索结果, 共 8 条, 只显示前 480 条
Fully-native SSH terminal for spatial computing
此开源项目旨在完全从0开始,仅用3块钱成本 + 2小时!即可训练出仅为25.8M的超小语言模型MiniMind。 MiniMind系列极其轻量,最小版本体积是 GPT-3 的 1/7000,力求做到最普通的个人GPU也可快速训练。 项目同时开源了大模型的极简结构-包含拓展共享混合专家(MoE)、数据集清洗、预训练(Pretrain)、监督微调(SFT)、LoRA微调, 直接偏好强化学习(DPO
“毕升”是活字印刷术的发明者,活字印刷术在推动人类知识传播方面发挥了至关重要的作用。我们希望毕升也能为智能应用的广泛落地提供强有力的支持。欢迎大家积极参与。 BISHENG 是一个面向下一代企业 AI 应用的开放式 LLM DevOps 平台。其强大而全面的功能包括:GenAI 工作流、RAG、Agent、统一模型管理、评估、SFT、数据集管理、企业级系统管理、可观察性等。
MAI-DS-R1 是 DeepSeek-R1 推理模型,经过微软 AI 团队的后期训练,提高了其对受阻主题的响应能力和风险状况,同时保持了其推理能力和竞争性能。基于 DeepSeek-R1,这是一种基于 Transformer 的自回归语言模型,利用多头自注意力和混合专家 (MoE) 进行可扩展和高效的推理。 MAI-DS-R1 是一个 DeepSeek-R1 推理模型,经过微软 AI 团
FunAudioLLM/CosyVoice(https://github.com/FunAudioLLM/CosyVoice) 项目是一个开源的多语言语音生成模型,它支持推理、训练和部署全流程。 该模型包括 CosyVoice-300M、CosyVoice-300M-SFT 和 CosyVoice-300M-Instruct 三种预训练模型,以及 CosyVoice-ttsfrd 资源。用户
在本研究中,我们推出了 MiMo-7B 系列模型,这一系列模型从零开始训练,专为推理任务而生。我们基于 MiMo-7B-Base 进行的强化学习实验表明,我们的模型拥有非凡的推理潜力,甚至超越了规模更大的 32B 模型。此外,我们还对冷启动的 SFT 模型进行了强化学习训练,最终形成了 MiMo-7B-RL,它在数学和代码推理任务上均表现出色,性能堪比 OpenAI o1-mini。 我们开
Muyan-TTS,一款低成本、具备良好二次开发支持的模型并完全开源,以方便学术界和小型应用团队的音频技术爱好者。 当前开源的Muyan-TTS版本由于训练数据规模有限,致使其仅对英语语种呈现出良好的支持效果。不过,得益于与之同步开源的详尽训练方法,从事相关行业的开发者能够依据自身实际业务场景,灵活地对Muyan-TTS进行功能升级与定制化改造。 01. H
小红书hi lab(Humane Intelligence Lab,人文智能实验室)团队首次开源文本大模型 dots.llm1。 dots.llm1是一个中等规模的Mixture of Experts (MoE)文本大模型,在较小激活量下取得了不错的效果。该模型充分融合了团队在数据处理和模型训练效率方面的技术积累,并借鉴了社区关于 MoE 的最新开源成果。hi lab团队开源了所有模型和必要的训练
只显示前20页数据,更多请搜索