关键词 "Semantic Reranker" 的搜索结果, 共 12 条, 只显示前 480 条
MCP Server for querying DBT Semantic Layer
MCP Server for Interacting with Cube Semantic Layers
MCP server providing a knowledge graph implementation with semantic search capabilities powered by Qdrant vector database
Mirror of
MCP server for Semantic Scholar to search for papers
Model Context Protocol (MCP) server implementation for semantic vector search and memory management using TxtAI. This server provides a robust API for storing, retrieving, and managing text-based memo
A FastMCP server implementation for the Semantic Scholar API, providing comprehensive access to academic paper data, author information, and citation networks.
Knowledge management system that allows you to build a persistent semantic graph from conversations with AI assistants. All knowledge is stored in standard Markdown files on your computer, giving you
MCP server providing semantic memory and persistent storage capabilities for Claude using ChromaDB and sentence transformers.
IFAdapter是一种新型的文本到图像生成模型,由腾讯和新加坡国立大学共同推出。提升生成含有多个实例的图像时的位置和特征准确性。传统模型在处理多实例图像时常常面临定位和特征准确性的挑战,IFAdapter通过引入两个关键组件外观标记(Appearance Tokens)和实例语义图(Instance Semantic Map)解决问题。外观标记用于捕获描述中的详细特征信息,实例语义图则将特征与特
企业 IM、在线客服、企业知识库 / 帮助文档、客户之声、工单系统、AI 对话、工作流、项目管理。 Docker 快速开始 方法一:克隆项目并启动docker compose容器,需要另行安装ollama,默认使用 qwen3:0.6b 模型 git clone https://gitee.com/270580156/weiyu.git && cd weiyu/deplo
Qwen3 Reranker是阿里巴巴通义千问团队发布的文本重排序模型,属于Qwen3模型家族。采用单塔交叉编码器架构,输入文本对后输出相关性得分。模型通过多阶段训练范式,基于高质量标注数据和大量合成训练对进行训练,支持超过100种语言,涵盖主流自然语言及多种编程语言。性能表现上,Qwen3 Reranker-8B在MTEB排行榜上取得了72.94的高分,Qwen3 Reranker-0.6B也已
只显示前20页数据,更多请搜索
Showing 97 to 108 of 108 results