关键词 "Serverless GPU inference" 的搜索结果, 共 5 条, 只显示前 480 条
AnimeGamer 是基于多模态大型语言模型(MLLM)构建的,可以生成动态动画镜头和角色状态更新,为用户提供无尽的动漫生活体验。它允许用户通过开放式语言指令与动漫角色互动,创建独特的冒险故事。该产品的主要优点包括:动态生成与角色交互的动画,能够在不同动漫之间创建交互,丰富的游戏状态预测等。 快速入门 🔮 环境设置 要设置推理环境,您
MMaDA(Multimodal Large Diffusion Language Models)是普林斯顿大学、清华大学、北京大学和字节跳动推出的多模态扩散模型,支持跨文本推理、多模态理解和文本到图像生成等多个领域实现卓越性能。模型用统一的扩散架构,具备模态不可知的设计,消除对特定模态组件的需求,引入混合长链推理(CoT)微调策略,统一跨模态的CoT格式,推出UniGRPO,针对扩散基础模型的统
FaceAge是一款AI人脸识别扫描模型,它通过数万张患者照片和公共图像数据库进行训练,能够精准判断个人衰老迹象。 模型描述 FaceAge 深度学习流程包括两个阶段:面部定位和提取阶段,以及带有输出线性回归器的特征嵌入阶段,可提供生物年龄的连续估计。 第一阶段通过在照片中定位人脸并在其周围定义一个边界框来预处理输入数据。然后对图像进行裁剪、调整大小,并在所有 RGB 通道上对像
SignGemma 是谷歌 DeepMind 团队推出的全球最强大的手语翻译AI模型。专注于将美国手语(ASL)翻译成英语文本,通过多模态训练方法,结合视觉数据和文本数据,精准识别手语动作并实时转化为口语文本。模型具备高准确率和上下文理解能力,响应延迟低于0.5秒。SignGemma采用高效架构设计,可在消费级GPU上运行,支持端侧部署,保护用户隐私。
SmolVLA 是 Hugging Face 开源的轻量级视觉-语言-行动(VLA)模型,专为经济高效的机器人设计。拥有4.5亿参数,模型小巧,可在CPU上运行,单个消费级GPU即可训练,能在MacBook上部署。SmolVLA 完全基于开源数据集训练,数据集标签为“lerobot”。 SmolVLA的主要功能 多模态输入处理:SmolVLA 能处理多种输入,包括多幅图像、语言指令以及
只显示前20页数据,更多请搜索
Showing 121 to 125 of 125 results