关键词 "embed testimonials" 的搜索结果, 共 20 条, 只显示前 480 条
Embeddable Model Context Protocol (MCP) solution for AI services. Seamlessly integrate MCP servers with OpenAI Agents, LangChain, and Autogen frameworks through a unified interface. Simplifies configu
This is just a proof-of-concept of MCP. As I see it, there is much that can be done to make it more useful with embedded devices, home assistants, or documentation. If you have any ideas, we can discu
🦀 Prevents outdated Rust code suggestions from AI assistants. This MCP server fetches current crate docs, uses embeddings/LLMs, and provides accurate context via a tool call.
A code repository indexing tool to supercharge your LLM experience.
python package for creating MCP servers with embedded LLM reasoning
⛓️RuleGo is a lightweight, high-performance, embedded, next-generation component orchestration rule engine framework for Go.
eShopLite is a set of reference .NET applications implementing an eCommerce site with features like Semantic Search, MCP, Reasoning models and more.
The tool connects to your Substack/Medium blogs via their RSS feeds, fetches your posts, and permanently caches them locally. It also generates embeddings for each post, enabling semantic search to fi
A powerful, production-ready context management system for Large Language Models (LLMs). Built with ChromaDB and modern embedding technologies, it provides persistent, project-specific memory capabili
Build a knowledge base into a tar.gz and give it to this MCP server, and it is ready to serve.
Mirror of
A long-term memory storage system for LLMs using the Model Context Protocol (MCP) standard. This system helps LLMs remember the context of work done over the entire history of a project, even across m
This MCP server lets AI assistants access and search your private documents, codebases, and latest tech info. It processes Markdown, text, and PDFs into a searchable database, extending AI knowledge b
An intelligent code memory system that leverages vector embeddings, structured databases, and knowledge graphs to store, retrieve, and analyze code patterns with semantic search capabilities, quality
RWKV开源发布了 RWKV7-G1 1.5B 推理模型(Reasoning Model)。模型基于 World v3.5 数据集训练,包含更多小说、网页、数学、代码和 reasoning 数据,总数据为 5.16T tokens。其具备其它同尺寸模型不具备的推理能力和任务能力,同时还支持现实世界 100+ 种语言。 在实际测试中,RWKV7-G1 1.5B 模型的推理逻辑性较强,能够完成有难度的
企业 IM、在线客服、企业知识库 / 帮助文档、客户之声、工单系统、AI 对话、工作流、项目管理。 Docker 快速开始 方法一:克隆项目并启动docker compose容器,需要另行安装ollama,默认使用 qwen3:0.6b 模型 git clone https://gitee.com/270580156/weiyu.git && cd weiyu/deplo
Meta 又有新的动作,推出基于视频训练的世界模型 V-JEPA 2(全称 Video Joint Embedding Predictive Architecture 2)。其能够实现最先进的环境理解与预测能力,并在新环境中完成零样本规划与机器人控制。 Meta 表示,他们在追求高级机器智能(AMI)的目标过程中,关键在于开发出能像人类一样认知世界、规划陌生任务执行方案,并高效适应不断变化环境的
只显示前20页数据,更多请搜索
Showing 97 to 116 of 116 results