关键词 "fusion cuisine" 的搜索结果, 共 9 条, 只显示前 480 条
SuperEdit是字节跳动智能创作团队和佛罗里达中央大学计算机视觉研究中心联合推出的指令引导图像编辑方法,基于优化监督信号提高图像编辑的精度和效果。SuperEdit基于纠正编辑指令,与原始图像和编辑图像对更准确地对齐,引入对比监督信号,进一步优化模型训练。SuperEdit不需要额外的视觉语言模型(VLM)或预训练任务,仅依赖高质量的监督信号,在多个基准测试中实现显著的性能提升。 Super
MMaDA(Multimodal Large Diffusion Language Models)是普林斯顿大学、清华大学、北京大学和字节跳动推出的多模态扩散模型,支持跨文本推理、多模态理解和文本到图像生成等多个领域实现卓越性能。模型用统一的扩散架构,具备模态不可知的设计,消除对特定模态组件的需求,引入混合长链推理(CoT)微调策略,统一跨模态的CoT格式,推出UniGRPO,针对扩散基础模型的统
DreamGen是英伟达推出的创新的机器人学习技术,基于AI视频世界模型生成合成数据,让机器人能在梦境中学习新技能。DreamGen仅需少量现实视频数据,能生成大规模逼真的训练数据,实现机器人在新环境中的行为泛化和环境泛化。DreamGen的四步流程包括微调视频世界模型、生成虚拟数据、提取虚拟动作以及训练下游策略。DreamGen让机器人在没有真实世界数据支持的情况下,凭文本指令完成复杂任务,显著
Gemini Diffusion是谷歌推出的实验性文本扩散模型。与传统自回归模型逐词生成文本不同,基于逐步细化噪声生成输出,能快速迭代纠正错误,让Gemini Diffusion在文本生成任务中表现出色,具备快速响应、生成更连贯文本和迭代细化等能力。Gemini Diffusion性能在外部基准测试中与更大规模模型相当,速度更快。Gemini Diffusion作为实验性演示提供,用户加入等待名单
Jaaz 是开源的AI设计Agent,本地免费 Lovart 平替项目。具备强大的 AI 设计能力,能智能生成设计提示,批量生成图像、海报、故事板等。Jaaz 支持 Ollama、Stable Diffusion、Flux Dev 等本地图像和语言模型,实现免费的图像生成。用户可以通过 GPT-4o、Flux Kontext 等技术,在对话中编辑图像,进行对象移除、风格转换等操作。Jaaz 提供无
文本到图像的扩散模型的最新进展已取得显著成功,但它们往往难以完全捕捉用户的意图。现有的使用文本输入结合边界框或区域蒙版的方法无法提供精确的空间引导,常常导致对象方向错位或意外。为了解决这些限制,我们提出了涂鸦引导扩散(ScribbleDiff),这是一种无需训练的方法,它利用用户提供的简单涂鸦作为视觉提示来引导图像生成。然而,将涂鸦纳入扩散模型存在挑战,因为涂鸦具有稀疏和单薄的特性,很难确保准确的
MegaFold是一个跨平台系统,用于加速蛋白质结构预测模型(例如 AlphaFold3、AlphaFold2)。 为什么选择 MegaFold? 跨平台支持:通过优化的基于 Triton 的内核,支持在异构设备上执行,包括 NVIDIA GPU 和 AMD GPU。 易于使用:只需更改几行代码即可获得巨大的性能提升 速度提升:每次迭代训练时间加快高达 1.73 倍 减少内存:将
MirageLSD 是 Decart AI 团队推出的全球首个 Live-Stream Diffusion(实时流扩散)AI 视频模型,能实现无限时长的实时视频生成,延迟低至 40 毫秒以内,支持 24 帧/秒的流畅输出。通过 Diffusion Forcing 技术和历史增强训练,解决了传统自回归模型在长时间生成中的误差累积问题,实现了视频的无限生成。基于Hopper 优化的 Mega Kern
Seed Diffusion是字节跳动Seed团队推出的实验性扩散语言模型,专注于代码生成任务。模型通过两阶段扩散训练、约束顺序学习和强化高效并行解码等关键技术,实现显著的推理加速。模型的推理速度达到2146 tokens/s,比同等规模的自回归模型快5.4倍,在多个代码基准测试中表现与自回归模型相当,在代码编辑任务上超越自回归模型。Seed Diffusion展示了离散扩散模型作为下一代生成模型
只显示前20页数据,更多请搜索
Showing 193 to 201 of 201 results