关键词 "old" 的搜索结果, 共 11 条, 只显示前 480 条
MCP server for interacting with Manifold Markets prediction markets
A mcp server that executes shell scripts in a designated folder as tools.
DreamFit是什么 DreamFit是字节跳动团队联合清华大学深圳国际研究生院、中山大学深圳校区推出的虚拟试衣框架,专门用在轻量级服装为中心的人类图像生成。框架能显著减少模型复杂度和训练成本,基于优化文本提示和特征融合,提高生成图像的质量和一致性。DreamFit能泛化到各种服装、风格和提示指令,生成高质量的人物图像。DreamFit支持与社区控制插件的无缝集成,降低使用门槛。 Dre
ViLAMP(VIdeo-LAnguage Model with Mixed Precision)是蚂蚁集团和中国人民大学联合推出的视觉语言模型,专门用在高效处理长视频内容。基于混合精度策略,对视频中的关键帧保持高精度分析,显著降低计算成本提高处理效率。ViLAMP在多个视频理解基准测试中表现出色,在长视频理解任务中,展现出显著优势。ViLAMP能在单张A100 GPU上处理长达1万帧(约3小时)
药物研发合作:礼来公司和诺华公司 近期成果:与谷歌DeepMind联合开发AlphaFold3 近期新闻:扩大与诺华的小分子药物发现协议范围 作为著名人工智能研究实验室 Google Deepmind 的姊妹公司,Isomorphic Labs 致力于开发深度学习、强化学习、主动学习、表征学习等领域的尖端计算技术,以解决药物研发中最棘手的一些挑战,以及当今生物、化学和医学研究中一
技术:设计治疗性蛋白质 商业模式:合作驱动 最新消息:A轮融资4000万美元 就在上个月,Latent Labs在 A 轮融资中筹集了4000 万美元,成为众人焦点。巧合的是,该公司也是由 Simon Kohl 创立的,Simon Kohl 是屡获殊荣的 AI 模型 AlphaFold 开发过程中的重要人物。然而,由于 AlphaFold 并非旨在从零开始创造新型蛋白质,Late
AlphaFold 是 DeepMind 开源的人工智能系统,借助 AlphaFold 可以更加准确的预测蛋白质的形状。主要应用于医疗保健和生命科学领域,有可能加速药物的研究与发现。 AlphaFold到底厉害在哪里?它的核心武器叫做“深度学习”,简单来说,就是让AI自己去学习成千上万个已知的蛋白质结构,从中找出隐藏的规律。更重要的是,AlphaFold引入了一种叫做“进化信息”的数据,分析
2021年7月,谷歌旗下DeepMind团队和欧洲生物信息研究所(EMBL-EBI)合作,发布由人工智能系统AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。这一数据库包含了AlphaFold人工智能系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物(大肠杆菌、果蝇、斑马鱼、小鼠…)。在人类蛋白质组方面,A
Codex 是一款支持并行处理多个任务的云端编程 Agent,能够提供如编程功能、回答代码库的问题、修复错误等功能。 Codex 基于 codex-1 模型驱动,OpenAI 方面表示这一模型由 o3 模型针对编程进行优化而得来。codex-1 通过强化学习在各种环境中,对现实世界的编码任务进行训练,从而能够生成接近人类风格和 PR 偏好的代码。 在 OpenAI 自己的代码评估和内部
Head是全球领先的 AI 市场营销工具,基于 AI 技术自动生成秒级部署的跨平台营销策略,精准计算病毒式传播路径,帮助品牌主和创作者将市场预算转化为可量化增长。Head 已为多品牌提供服务,覆盖电商、科技、游戏和 AI 等多个领域,业务范围触及全球 200 多个国家和地区。 Head的主要功能 品牌DNA生成:一键生成品牌核心价值观、视觉元素和市场定位,确保营销信息一致。 营销策略
FaceAge是一款AI人脸识别扫描模型,它通过数万张患者照片和公共图像数据库进行训练,能够精准判断个人衰老迹象。 模型描述 FaceAge 深度学习流程包括两个阶段:面部定位和提取阶段,以及带有输出线性回归器的特征嵌入阶段,可提供生物年龄的连续估计。 第一阶段通过在照片中定位人脸并在其周围定义一个边界框来预处理输入数据。然后对图像进行裁剪、调整大小,并在所有 RGB 通道上对像
只显示前20页数据,更多请搜索
Showing 169 to 179 of 179 results