关键词 "protein engineering" 的搜索结果, 共 24 条, 只显示前 480 条
A MCP Server for APK Tool (Part of Android Reverse Engineering MCP Suites)
This is a revolutionary AI MCP plugin with excellent pluggable and encapsulated features. With just a few lines of configuration, it can easily integrate into your Spring boot web program and give it
MCP Server for Teenage Engineering EP-133 KO-II
Plugin for JADX to integrate MCP server
A MCP (Model Context Protocol) server for interacting with dbt.
MCP server for JADX-AI Plugin
jebmcp is a lightweight tool for managing and processing batch jobs in cloud environments. It simplifies task scheduling and monitoring, making it easier for developers to optimize workflows and impro
🚀 MCP Server: Platform enabling AIs to act as autonomous developers. From idea conception to final testing, automating the entire software development process. #AutonomousDev #AI #Innovation #Software
MCP Server for IDA Pro
A Model Context Protocol (MCP) server that enables AI assistants to interact with IDA Pro for reverse engineering and binary analysis tasks.
The semantic layer for software engineering: Connect code to meaning, build on understanding
awsome kali MCPServers is a set of MCP servers tailored for Kali Linux, designed to empower AI Agents in reverse engineering and security testing. It offers flexible network analysis, target sniffing,
An MCP server allowing LLMs to interact with Ansys/AGI STK - Digital Mission Engineering Software
A directory of AI Agents and MCP Orchestration open source tools
MCP servers for Protein Data Bank, ChemBL, and other life science data (WIP), with Ollama client for local testing.
MCP server for UniProt protein data access
Lovart 全球首个设计 Agent 体验 Lovart 的三个特点: 一、全链路设计和执行,一句话搞定 以前的文生图工具,它们所提供的任务是“生成图片”这一环。 而设计 Agent,则像一位“设计执行官”,覆盖从创意拆解到专业交付的整个视觉流程。 从意图拆解 → 任务链 → 最后成品,一句话全搞定。 单次可以执行上
专长:肽类药物的人工智能和量子计算。ProteinQure 应用量子计算设计肽类疗法,专注于免疫肿瘤学和代谢疾病。他们的人工智能工具能够提高肽类药物的稳定性和疗效,从而解决药物研发中的关键挑战。 ProteinQure成立于2017年,总部位于多伦多,将量子计算、强化学习和原子模拟相结合,设计新型蛋白质药物。利用这些混合技术,他们模拟了蛋白质折叠等基本过程,以及生物分子之间相互作用的基础物理学。
2021年7月,谷歌旗下DeepMind团队和欧洲生物信息研究所(EMBL-EBI)合作,发布由人工智能系统AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。这一数据库包含了AlphaFold人工智能系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物(大肠杆菌、果蝇、斑马鱼、小鼠…)。在人类蛋白质组方面,A
1. 本研究介绍了 PrefixProt,这是一个新颖的框架,它通过利用预训练蛋白质语言模型 (ProtLM) 上的前缀调整来实现可控蛋白质设计。它使用学习到的虚拟标记作为模块化控制标签,引导蛋白质生成朝着所需的结构和功能特性发展。 2. PrefixProt 最引人注目的特性在于它能够通过组合不同的虚拟标记来生成具有多种用户自定义属性(例如结构和功能)的蛋白质,而无需重新训练基础模型。这种组合
1.PRO-LDM 引入了一种模块化潜在扩散模型,用于全长蛋白质序列设计,该模型兼具无条件生成和功能优化,将准确性与计算效率完美结合。 2. 一项重大创新在于在潜在空间中应用扩散,显著降低采样成本,同时保持生成序列的保真度和多样性。 3. PRO-LDM 通过将条件潜在扩散与监督适应度预测相结合,实现了具有目标特性(例如荧光、溶解度、热/化学稳定性)的蛋白质序列的可控设计。 4. 通过无分类
1.本研究提出了蛋白质折叠进化模拟器(PFES),这是一个从随机氨基酸序列开始,以原子分辨率模拟蛋白质进化的计算框架。 2.作者利用PFES证明,稳定的球状蛋白质折叠可以相对容易地从随机序列进化而来,每个位点只需0.2到3个突变,与LUCA以来观察到的进化变化相当或更少。 3.值得注意的是,大约一半进化出的蛋白质与已知的自然折叠(例如HTH、SH3和β三明治)相似,而其余的则是独一无二的,这凸
只显示前20页数据,更多请搜索
Showing 145 to 168 of 168 results