关键词 "token inference" 的搜索结果, 共 4 条, 只显示前 480 条
AnimeGamer 是基于多模态大型语言模型(MLLM)构建的,可以生成动态动画镜头和角色状态更新,为用户提供无尽的动漫生活体验。它允许用户通过开放式语言指令与动漫角色互动,创建独特的冒险故事。该产品的主要优点包括:动态生成与角色交互的动画,能够在不同动漫之间创建交互,丰富的游戏状态预测等。 快速入门 🔮 环境设置 要设置推理环境,您
MMaDA(Multimodal Large Diffusion Language Models)是普林斯顿大学、清华大学、北京大学和字节跳动推出的多模态扩散模型,支持跨文本推理、多模态理解和文本到图像生成等多个领域实现卓越性能。模型用统一的扩散架构,具备模态不可知的设计,消除对特定模态组件的需求,引入混合长链推理(CoT)微调策略,统一跨模态的CoT格式,推出UniGRPO,针对扩散基础模型的统
BAGEL是字节跳动开源的多模态基础模型,拥有140亿参数,其中70亿为活跃参数。采用混合变换器专家架构(MoT),通过两个独立编码器分别捕捉图像的像素级和语义级特征。BAGEL遵循“下一个标记组预测”范式进行训练,使用海量多模态标记数据进行预训练,包括语言、图像、视频和网络数据。在性能方面,BAGEL在多模态理解基准测试中超越了Qwen2.5-VL和InternVL-2.5等顶级开源视觉语言模型
TokenSwift 是北京通用人工智能研究院团队推出的超长文本生成加速框架,能在90分钟内生成10万Token的文本,相比传统自回归模型的近5小时,速度提升了3倍,生成质量无损。TokenSwift 通过多Token生成与Token重用、动态KV缓存更新以及上下文惩罚机制等技术,减少模型加载延迟、优化缓存更新时间并确保生成多样性。支持多种不同规模和架构的模型,如1.5B、7B、8B、14B的MH
只显示前20页数据,更多请搜索
Showing 121 to 124 of 124 results