关键词 "training sequences" 的搜索结果, 共 3 条, 只显示前 480 条
小红书hi lab(Humane Intelligence Lab,人文智能实验室)团队首次开源文本大模型 dots.llm1。 dots.llm1是一个中等规模的Mixture of Experts (MoE)文本大模型,在较小激活量下取得了不错的效果。该模型充分融合了团队在数据处理和模型训练效率方面的技术积累,并借鉴了社区关于 MoE 的最新开源成果。hi lab团队开源了所有模型和必要的训练
文本到图像的扩散模型的最新进展已取得显著成功,但它们往往难以完全捕捉用户的意图。现有的使用文本输入结合边界框或区域蒙版的方法无法提供精确的空间引导,常常导致对象方向错位或意外。为了解决这些限制,我们提出了涂鸦引导扩散(ScribbleDiff),这是一种无需训练的方法,它利用用户提供的简单涂鸦作为视觉提示来引导图像生成。然而,将涂鸦纳入扩散模型存在挑战,因为涂鸦具有稀疏和单薄的特性,很难确保准确的
Experience revolutionary language learning through real-time conversation practice, instant grammar correction, pronunciation training, and personalized vocabulary building in 30+ languages.
只显示前20页数据,更多请搜索
Showing 337 to 339 of 339 results