分类导航

GAMA
深度生成序列模型的归因分配使得仅使用正数据进行可解释性分析成为可能 1.本文介绍了 GAMA(生成归因度量分析),这是第一个基于积分梯度的归因方法,适用于仅基于正样本数据训练的自回归生成模型。即使没有负样本,GAMA 也能解释此类生成模型所学习的特征。 2.与大多数为监督学习开发的可解释性工具不同,GAMA 适用于单类生成模型,例如长短期记忆(LSTM),这类模型常用于抗体设计,因为负样本(非

PDeepPP
1. PDeepPP 通过将 ESM-2 蛋白质语言模型嵌入与混合 Transformer-CNN 架构融合,引入了统一的肽识别深度学习框架。该设计在各种生物信息学任务中均实现了高精度和可扩展性。 2. PDeepPP 在 33 项基准生物学任务中的表现显著优于先前的方法,包括抗菌、抗癌和糖基化位点识别。在抗菌肽检测中,其准确率达到 97.26%,PR AUC 为 0.9977,在抗疟药检测

VALID-Mol
1.VALID-Mol 是一个系统性框架,通过集成快速分子工程、领域特定微调和自动化化学验证,显著提高了 LLM 生成分子的可靠性,有效性从 3% 提高到 83%。 2. 与典型的 LLM 应用程序(这些应用程序会产生看似合理但化学上无效的输出)不同,VALID-Mol 使用化学信息学工具验证每个生成分子的语法和语义,从而确保其科学严谨性。 3. 该框架最引人注目的创新在于其系统化的快速分子工

MegaFold
MegaFold是一个跨平台系统,用于加速蛋白质结构预测模型(例如 AlphaFold3、AlphaFold2)。 为什么选择 MegaFold? 跨平台支持:通过优化的基于 Triton 的内核,支持在异构设备上执行,包括 NVIDIA GPU 和 AMD GPU。 易于使用:只需更改几行代码即可获得巨大的性能提升 速度提升:每次迭代训练时间加快高达 1.73 倍 减少内存:将
只显示前20页数据