OutfitAI是一款AI服装搭配生成器,利用虚拟试衣技术帮助用户快速浏览各种时尚服装,适用于时尚购物。该产品的主要优点在于提供虚拟试穿功能,节省购物时间并帮助用户发现新款式。定位于时尚爱好者和购物者。

需求人群:

OutfitAI适合时尚爱好者和购物者,帮助他们在购物前快速浏览并选择合适的服装,节省时间和提供个性化推荐。

使用场景示例:

用户A在OutfitAI上上传照片,试穿多款潮流服装,快速找到心仪款式。

用户B使用OutfitAI生成个性化时尚推荐,轻松搭配出新风格。

用户C在OutfitAI上体验高级AI算法,感受真实的服装可视化效果。

产品特色:

上传照片并立即看到自己试穿各种时尚服装,提供时尚购物的虚拟试衣体验

个性化时尚推荐,节省搭配时间

高级AI算法,实现真实服装可视化

适用于不同体型,呈现真实搭配效果

网址: https://www.aioutfitgen.com 

相关推荐

DreamFit

DreamFit

<h2 style="font-size: 20px;">DreamFit是什么</h2> <p>DreamFit是字节跳动团队联合清华大学深圳国际研究生院、中山大学深圳校区推出的虚拟试衣框架,专门用在轻量级服装为中心的人类图像生成。框架能显著减少模型复杂度和训练成本,基于优化文本提示和特征融合,提高生成图像的质量和一致性。DreamFit能泛化到各种服装、风格和提示指令,生成高质量的人物图像。DreamFit支持与社区控制插件的无缝集成,降低使用门槛。</p> <p><img src="https://img.medsci.cn/aisite/img//LTxcrJNntWduEjo3Fz0efwOUAOWHyu13P41gtIeX.png" alt=""></p> <h2 style="font-size: 20px;">DreamFit的主要功能</h2> <ul> <li>即插即用:易于与社区控制插件集成,降低使用门槛。</li> <li>高质量生成:基于大型多模态模型丰富提示,生成高一致性的图像。</li> <li>姿势控制:支持指定人物姿势,生成符合特定姿势的图像。</li> <li>多主题服装迁移:将多个服装元素组合到一张图像中,适用于电商服装展示等场景。</li> </ul> <h2 style="font-size: 20px;">DreamFit的技术原理</h2> <ul> <li>轻量级编码器(Anything-Dressing Encoder):基于 LoRA 层,将预训练的扩散模型(如 Stable Diffusion 的 UNet)扩展为轻量级的服装特征提取器。只训练 LoRA 层,而不是整个 UNet,大大减少模型复杂度和训练成本。</li> <li>自适应注意力(Adaptive Attention):引入两个可训练的线性投影层,将参考图像特征与潜在噪声对齐。基于自适应注意力机制,将参考图像特征无缝注入 UNet,确保生成的图像与参考图像高度一致。</li> <li>预训练的多模态模型(LMMs):在推理阶段,用 LMMs 重写用户输入的文本提示,增加对参考图像的细粒度描述,减少训练和推理阶段的文本提示差异。</li> </ul> <h2 style="font-size: 20px;">DreamFit的项目地址</h2> <ul> <li>GitHub仓库:https://github.com/bytedance/DreamFit</li> <li>arXiv技术论文:https://arxiv.org/pdf/2412.17644</li> </ul> <h2 style="font-size: 20px;">DreamFit的应用场景</h2> <ul> <li>虚拟试穿:消费者在线上虚拟试穿服装,节省时间和成本,提升购物体验。</li> <li>服装设计:设计师快速生成服装效果图,加速设计流程,提高工作效率。</li> <li>个性化广告:根据用户偏好生成定制化广告,提高广告吸引力和转化率。</li> <li>虚拟现实(VR)/增强现实(AR):提供虚拟试穿体验,增强用户沉浸感和互动性。</li> <li>社交媒体内容创作:生成个性化图像,吸引更多关注,提升内容的多样性和吸引力。</li> </ul> <p> </p> <div class="markdown-heading" dir="auto"> <h2 class="heading-element" dir="auto" tabindex="-1">Installation Guide</h2> <a id="user-content-installation-guide" class="anchor" href="https://github.com/bytedance/DreamFit#installation-guide" aria-label="Permalink: Installation Guide"></a></div> <ol dir="auto"> <li>Clone our repo:</li> </ol> <div class="highlight highlight-source-shell notranslate position-relative overflow-auto" dir="auto"> <pre>git clone https://github.com/bytedance/DreamFit.git</pre> <div class="zeroclipboard-container"> </div> </div> <ol dir="auto" start="2"> <li>Create new virtual environment:</li> </ol> <div class="highlight highlight-source-shell notranslate position-relative overflow-auto" dir="auto"> <pre>conda create -n dreamfit python==3.10 conda activate dreamfit</pre> <div class="zeroclipboard-container"> </div> </div> <ol dir="auto" start="3"> <li>Install our dependencies by running the following command:</li> </ol> <div class="highlight highlight-source-shell notranslate position-relative overflow-auto" dir="auto"> <pre>pip install -r requirements.txt pip install flash-attn --no-build-isolation --use-pep517 </pre> <div class="zeroclipboard-container"> </div> </div> <div class="markdown-heading" dir="auto"> <h2 class="heading-element" dir="auto" tabindex="-1">Models</h2> <a id="user-content-models" class="anchor" href="https://github.com/bytedance/DreamFit#models" aria-label="Permalink: Models"></a></div> <ol dir="auto"> <li>You can download the pretrained models <a href="https://huggingface.co/bytedance-research/Dreamfit" rel="nofollow">Here</a>. Download the checkpoint to <code>pretrained_models</code> folder.</li> <li>If you want to inference with StableDiffusion1.5 version, you need to download the <a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5" rel="nofollow">stable-diffusion-v1-5</a>, <a href="https://huggingface.co/stabilityai/sd-vae-ft-mse" rel="nofollow">sd-vae-ft-mse</a> to <code>pretrained_models</code>. If you want to generate images of different styles, you can download the corresponding stylized model, such as <a href="https://huggingface.co/SG161222/Realistic_Vision_V6.0_B1_noVAE" rel="nofollow">RealisticVision</a>, to <code>pretrained_models</code>.</li> <li>If you want to inference with Flux version, you need to download the <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" rel="nofollow">flux-dev</a> to <code>pretrained_models</code> folder</li> <li>If you want to inference with pose control, you need to download the <a href="https://huggingface.co/lllyasviel/Annotators" rel="nofollow">Annotators</a> to <code>pretrained_models</code> folder</li> </ol> <p>The folder structures should look like these:</p> <div class="snippet-clipboard-content notranslate position-relative overflow-auto"> <pre class="notranslate"><code>├── pretrained_models/ | ├── flux_i2i_with_pose.bin │ ├── flux_i2i.bin │ ├── flux_tryon.bin │ ├── sd15_i2i.ckpt | ├── stable-diffusion-v1-5/ | | ├── ... | ├── sd-vae-ft-mse/ | | ├── diffusion_pytorch_model.bin | | ├── ... | ├── Realistic_Vision_V6.0_B1_noVAE(or other stylized model)/ | | ├── unet/ | | | ├── diffusion_pytorch_model.bin | | | ├── ... | | ├── ... | ├── Annotators/ | | ├── body_pose_model.pth | | ├── facenet.pth | | ├── hand_pose_model.pth | ├── FLUX.1-dev/ | | ├── flux1-dev.safetensors | | ├── ae.safetensors | | ├── tokenizer | | ├── tokenizer_2 | | ├── text_encoder | | ├── text_encoder_2 | | ├── ... </code></pre> <div class="zeroclipboard-container"> </div> </div> <div class="markdown-heading" dir="auto"> <h2 class="heading-element" dir="auto" tabindex="-1">Inference</h2> <a id="user-content-inference" class="anchor" href="https://github.com/bytedance/DreamFit#inference" aria-label="Permalink: Inference"></a></div> <div class="markdown-heading" dir="auto"> <h3 class="heading-element" dir="auto" tabindex="-1">Garment-Centric Generation</h3> <a id="user-content-garment-centric-generation" class="anchor" href="https://github.com/bytedance/DreamFit#garment-centric-generation" aria-label="Permalink: Garment-Centric Generation"></a></div> <div class="highlight highlight-source-shell notranslate position-relative overflow-auto" dir="auto"> <pre># inference with FLUX version bash run_inference_dreamfit_flux_i2i.sh \ --cloth_path example/cloth/cloth_1.png \ --image_text "A woman wearing a white Bape T-shirt with a colorful ape graphic and bold text." \ --save_dir "." \ --seed 164143088151 # inference with StableDiffusion1.5 version bash run_inference_dreamfit_sd15_i2i.sh \ --cloth_path example/cloth/cloth_3.jpg\ --image_text "A woman with curly hair wears a pink t-shirt with a logo and white stripes on the sleeves, paired with white trousers, against a plain white background."\ --ref_scale 1.0 \ --base_model pretrained_models/Realistic_Vision_V6.0_B1_noVAE/unet/diffusion_pytorch_model.bin \ --base_model_load_method diffusers \ --save_dir "." \ --seed 28</pre> <div class="zeroclipboard-container"> </div> </div> <p>Tips:</p> <ol dir="auto"> <li>If you have multiple pieces of clothing, you can splice them onto one picture, as shown in the second row.</li> <li>Use <code>--help</code> to check the meaning of each argument.Garment-Centric Generation with Pose Control</li> </ol> <div class="highlight highlight-source-shell notranslate position-relative overflow-auto" dir="auto"> <pre>bash run_inference_dreamfit_flux_i2i_with_pose.sh \ --cloth_path example/cloth/cloth_1.png \ --pose_path example/pose/pose_1.jpg \ --image_text "A woman wearing a white Bape T-shirt with a colorful ape graphic and bold text." \ --save_dir "." \ --seed 16414308815</pre> </div> <div class="markdown-heading" dir="auto"> <h3 class="heading-element" dir="auto" tabindex="-1">Tryon</h3> <a id="user-content-tryon" class="anchor" href="https://github.com/bytedance/DreamFit#tryon" aria-label="Permalink: Tryon"></a></div> <div class="highlight highlight-source-shell notranslate position-relative overflow-auto" dir="auto"> <pre>bash run_inference_dreamfit_flux_tryon.sh \ --cloth_path example/cloth/cloth_1.png \ --keep_image_path example/tryon/keep_image_4.png \ --image_text "A woman wearing a white Bape T-shirt with a colorful ape graphic and bold text and a blue jeans." \ --save_dir "." \ --seed 16414308815</pre> <div class="zeroclipboard-container"> </div> </div> <p>Tips:</p> <ol dir="auto"> <li>Keep image is obtained by drawing the openpose on the garment-agnostic region.</li> <li>The generation code for keep image cannot be open-sourced for the time being. As an alternative, we have provided several keep images for testing.</li> </ol> <p>Disclaimer</p> <p>Most images used in this repository are sourced from the Internet. These images are solely intended to demonstrate the capabilities of our research. If you have any concerns, please contact us, and we will promptly remove any inappropriate content.</p> <p>This project aims to make a positive impact on the field of AI-driven image generation. Users are free to create images using this tool, but they must comply with local laws and use it responsibly. The developers do not assume any responsibility for potential misuse by users.</p> <div class="markdown-heading" dir="auto"> <h2 class="heading-element" dir="auto" tabindex="-1">Citation</h2> <a id="user-content-citation" class="anchor" href="https://github.com/bytedance/DreamFit#citation" aria-label="Permalink: Citation"></a></div> <div class="snippet-clipboard-content notranslate position-relative overflow-auto"> <pre class="notranslate"><code>@article{lin2024dreamfit, title={DreamFit: Garment-Centric Human Generation via a Lightweight Anything-Dressing Encoder}, author={Lin, Ente and Zhang, Xujie and Zhao, Fuwei and Luo, Yuxuan and Dong, Xin and Zeng, Long and Liang, Xiaodan}, journal={arXiv preprint arXiv:2412.17644}, year={2024} } </code></pre> <div class="zeroclipboard-container"> </div> </div> <div class="markdown-heading" dir="auto"> </div>

poify.ai

poify.ai

<h2 style="font-size: 20px;">Poify是什么</h2> <p>Poify是快手推出的AI电商营销工具,帮助商家和创意工作者快速生成高质量的图片内容。包括 AI 模特试衣、换背景影棚风格、局部重绘等,能满足商家在商品展示图制作上的多样化需求。用户可以上传衣服原图并设置图片尺寸,快速生成 AI 模特试衣图。支持文生图和图生图,用户可以通过文字描述或上传图片进行创作。或生成圣诞主题的创意图片。降低了商家获取高质量商品展示图的成本,提升了商品在电商平台上的视觉吸引力,提高商品的点击率和转化率。</p> <h2 style="font-size: 20px;">Poify的主要功能</h2> <ul> <li>AI 模特试衣:用户上传衣服原图并设置图片尺寸,可快速生成 AI 模特试衣图,满足商家在商品展示图制作上的需求。</li> <li>换背景影棚风格:能快速更换商品图片背景,适配不同场景,提升商品图片的视觉吸引力。</li> <li>局部重绘:对商品图片的局部进行修改和优化,帮助商家更好地展示商品细节。</li> <li>文生图和图生图:支持通过文字描述生成图片,对已有图片进行再创作,为创意工作者和设计师提供了便捷的创作工具。</li> <li>奇幻场景生成:上传照片后,AI 可将其转化为与北极熊共舞的奇幻场景,或生成圣诞主题的创意图片,如成为圣诞老人、与爱宠共度圣诞等。</li> <li>个性化创作:用户可以根据自己的创意需求,选择不同的主题和风格,上传照片后,AI 会将照片融入所选主题中,生成独特的创意作品。</li> </ul> <h2 style="font-size: 20px;">如何使用Poify</h2> <ul> <li>访问官网:访问 Poify 的官方网站。</li> <li>选择主题:在网站上选择一个主题,如“Cosmic Voyage”(宇宙之旅)或“Fantasy”(奇幻)等。</li> <li>上传照片:将你想要处理的照片上传到网站。</li> <li>AI 处理:等待 AI 对照片进行处理,将其融入所选主题中。</li> <li>电商作图:商家可以用电商作图功能,如 AI 模特试衣、换背景影棚风格、局部重绘等,快速生成高质量的商品展示图。</li> <li>查看结果:查看 AI 生成的结果图片,并进行必要的编辑调整。</li> <li>下载或分享:将生成的创意作品下载到本地,或直接分享到社交媒体等平台。</li> </ul> <h2 style="font-size: 20px;">Poify的应用场景</h2> <ul> <li>商品展示图制作:Poify 的电商作图功能可以快速生成高质量的商品展示图,包括 AI 模特试衣、换背景影棚风格、局部重绘等。</li> <li>促销活动海报设计:Poify 可以快速生成促销活动海报,帮助企业提高营销效果。</li> <li>店铺装修:用 Poify商家可以自动生成店铺装修图片,提升店铺整体视觉效果。</li> <li>社交媒体内容制作:Poify 生成的创意图片可以用于社交媒体的内容制作,吸引更多的关注和互动。</li> <li>个人创意分享:用户可以将生成的创意作品下载或分享到社交媒体平台,与朋友和粉丝分享独特的创意。</li> </ul>

Face Swap Solution Online

Face Swap Solution Online

AI-powered face swapping platform

face swapper online

face swapper online

Swap faces in images with high quality using AI-powered Face Swap Online.

Faceswap.tech

Faceswap.tech

AI-powered face swapping platform for photos and videos

Free AI Face Swap

Free AI Face Swap

Free online tool for realistic face swapping in photos and videos.

Wefaceswap

Wefaceswap

Effortless faceswap in the cloud

www.swapfaces.ai

www.swapfaces.ai

AI-powered video face swapping tool

BeArt AI Face Swap

BeArt AI Face Swap

A completely free online photo and video face swap tool.