搜索结果

关键词 "多语言" 的搜索结果, 共 8 条, 只显示前 480

DeepWiki

DeepWiki

DeepWiki :基于 GitHub Repo 源代码生成最新版可对话式文档,由 Devin驱动。 开源项目免费使用,无需注册。 私有项目中使用需在 http://devin.ai 注册账号。 直接访问 https://deepwiki.com,或将 GitHub 链接中的 github 替换为 deepwiki。 即:GitHub 仓库链接中的 github 替换为 deepwiki,即可直接访问对应的 DeepWiki 页面。如:https://deepwiki.com/<user>/<repo> Devin AI 是由 Cognition Labs开发的自主人工智能助手工具,标榜为 “AI 软件开发者”。曾号称全球首个全自动 AI 程序员,因执行成本高导致订阅价格也极高,后来就淡出人们视野了。目前更主流的开发形式是 IDE + MCP(如 Cursor、VSCode、Windsurf 等),半自动化的工具链调用让控制更精准,结果也变得更加可靠。 Devin 这次带来的 DeepWiki 确实是阅读 GitHub 项目的好帮手,在正式开始介绍 DeepWiki 前,我们先来了解一下目前阅读开源项目的痛点: GitHub 主流开源项目介绍以英文 README.md 为主,支持多语言介绍的并不多,对于非母语的人来说,存在一定阅读障碍。 很多仓库可能连比较像样的 README 介绍都没,更别提专门的文档网站或 Blog 了。于开发者而言是灾难性的,需要自行查看源代码或在 issues 中搜寻一些描述。 如果仓库文件超多,上百个文件,或大几十万行代码,想要通过阅读源码来建立项目宏观认知会变得特别难。 阅读一个仓库的源代码或许不难,但面对 GitHub 这种世界级的开发者聚集地,每天都会诞生大量开源项目,纯靠人力阅读总结会被累死(面对海量代码,人会变得麻木)。 在项目文档中不会有功能与源码之间的映射关系说明,但这又是借鉴参考项目时的一个重点需求。 在源码阅读方面,其实 GitHub 本身就做了许多改进,如树状目录,函数依赖图谱等。 随着 GitHub Copilot 的升级,也被集成进 GitHub,通过交互式对话来进一步辅助源码阅读。点击具体代码行号或顶部固定按钮唤醒 AI 对话,可提问项目相关的任何问题。 但以上这些 GitHub 提供的能力远远不够,并不能帮助我们快速建立项目宏观层面的认知(系统架构图、依赖图等)。 DeepWiki 简介 关于 DeepWiki 的详细信息是由以下推文揭露的,我对其进行了梳理。 Cognition Labs 打造了 DeepWiki,一个免费、可对话的 GitHub 仓库百科全书,致力于让每一个开发者都能轻松访问最新、结构化的项目文档。DeepWiki 由 Devin 技术驱动,专为开源项目免费开放,无需注册即可使用。只需将任何 GitHub 仓库链接中的 github 替换为 deepwiki,即可直接访问对应的 DeepWiki 页面。如:https://deepwiki.com/<user>/<repo> 据 Cognition Labs 成员介绍,DeepWiki 在构建过程中,让大语言模型(LLM)全面扫描了完整的代码库。到目前为止,它已经索引了超过 30,000 个热门 GitHub 仓库,处理了超过 40 亿行代码,处理总量超过 1000 亿 tokens,仅索引过程的计算开销就超过了 30 万美元。索引一个仓库的平均成本大约为 12 美元,但团队还是决定让所有开源项目免费使用,无需任何注册门槛。 从系统设计来看,模型在局部理解代码(如函数、模块)方面表现非常出色,但真正的挑战在于理解整个代码库的全局结构。DeepWiki 针对这一难题,采用了分层方法:先将代码库划分为一套套高层次系统(high-level systems),再为每一个系统生成对应的 Wiki 页面,帮助用户在整体上把握项目架构。 它还利用了一个非常有趣的信号——提交历史(commit history)。通过分析哪些文件经常被一起修改,可以构建出文件之间的关联图(graph),从而揭示项目内部许多潜在且重要的结构模式。这一方法进一步增强了 DeepWiki 对代码库内部逻辑关系的理解与呈现。 如果找不到你需要的仓库,团队也很乐意帮你索引任何公开 GitHub 仓库。对于私有仓库,只需注册 Devin 账号即可使用相同功能。此外,DeepWiki 支持分享 Wiki 页面和智能解答链接,方便团队成员始终保持信息同步。

microsoft phi

microsoft phi

phi-4是一个最先进的开放模型,它基于合成数据集、来自筛选过的公共领域网站的数据以及获取的学术书籍和问答数据集构建而成。该方法的目标是确保小型模型能够使用专注于高质量和高级推理的数据进行训练。该模型 phi-4经过了严格的增强和校准过程,结合了监督微调和直接偏好优化,以确保精确的指令遵循和强大的安全措施。 14B 参数,密集解码器专用 Transformer 模型 我们的模型旨在加速语言模型的研究,并将其作为生成式人工智能功能的基石。它适用于通用人工智能系统和应用(主要针对英语),这些系统和应用需要: 1. 内存/计算受限的环境。2 . 延迟受限的场景。3 . 推理和逻辑。 训练数据集 我们的训练数据是用于 Phi-3 的数据的扩展,包括来自以下各种来源的数据: 对公开的文档进行严格的质量筛选,选择高质量的教育数据和代码。 新创建的合成“类似教科书”的数据,用于教授数学、编码、常识推理、世界常识(科学、日常活动、心理理论等)。 获得学术书籍和问答数据集。 高质量的聊天格式监督数据涵盖各种主题,以反映人类在遵循指示、真实性、诚实和乐于助人等不同方面的偏好。 多语言数据约占我们整体数据的 8%。我们注重能够提升模型推理能力的数据质量,并筛选公开的文档,确保其包含的知识水平符合要求。 基准数据集 我们phi-4使用OpenAI 的 SimpleEval和我们自己的内部基准进行了评估,以了解该模型的功能,更具体地说: MMLU:用于多任务语言理解的流行聚合数据集。 数学:具有挑战性的竞赛数学问题。 GPQA:复杂的、研究生水平的科学问题。 DROP:复杂的理解和推理。 MGSM:多语言小学数学。 HumanEval:功能代码生成。 SimpleQA:事实回应。

只显示前20页数据,更多请搜索