关键词 "生物信息学" 的搜索结果, 共 9 条, 只显示前 480 条
专长:利用人工智能和基因组学加速药物发现。Engine Biosciences 将人工智能与基因组学相结合,以发现基因相互作用和新型药物靶点。他们的研发管线涵盖肿瘤学和传染病领域的候选药物,展现了人工智能驱动的洞察力在药物发现领域的强大力量。
2021年7月,谷歌旗下DeepMind团队和欧洲生物信息研究所(EMBL-EBI)合作,发布由人工智能系统AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。这一数据库包含了AlphaFold人工智能系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物(大肠杆菌、果蝇、斑马鱼、小鼠…)。在人类蛋白质组方面,A
AlphaGenome是谷歌DeepMind推出的全新AI模型,能更深入地理解基因组。模型能接收长达100万个碱基对的DNA序列输入,预测数千种表征其调控活性的分子特性,评估基因变异的影响。模型基于卷积层、Transformer架构,训练数据来自大型公共数据库。模型具有长序列上下文与高分辨率、全面多模态预测、高效变异评分和新颖剪接点建模等优势,在多项基准测试中表现顶尖,基于API向非商业研究领域开
1. VarDrug 引入了一个机器学习框架,用于预测基因变异如何影响药物反应,重点关注精神类药物。它使用来自 PharmGKB 的数据来解决变异体-药物相互作用问题,并比基于规则的方法取得了显著的性能提升。 2. 其核心是一个自监督变异编码器,该编码器基于 100,000 个人类基因组变异体进行训练,并使用 DNABERT2 嵌入对每个变异体的基因组背景进行编码。将此变异编码器添加到标准机器学
1.PRO-LDM 引入了一种模块化潜在扩散模型,用于全长蛋白质序列设计,该模型兼具无条件生成和功能优化,将准确性与计算效率完美结合。 2. 一项重大创新在于在潜在空间中应用扩散,显著降低采样成本,同时保持生成序列的保真度和多样性。 3. PRO-LDM 通过将条件潜在扩散与监督适应度预测相结合,实现了具有目标特性(例如荧光、溶解度、热/化学稳定性)的蛋白质序列的可控设计。 4. 通过无分类
1. PDeepPP 通过将 ESM-2 蛋白质语言模型嵌入与混合 Transformer-CNN 架构融合,引入了统一的肽识别深度学习框架。该设计在各种生物信息学任务中均实现了高精度和可扩展性。 2. PDeepPP 在 33 项基准生物学任务中的表现显著优于先前的方法,包括抗菌、抗癌和糖基化位点识别。在抗菌肽检测中,其准确率达到 97.26%,PR AUC 为 0.9977,在抗疟药检测
MegaFold是一个跨平台系统,用于加速蛋白质结构预测模型(例如 AlphaFold3、AlphaFold2)。 为什么选择 MegaFold? 跨平台支持:通过优化的基于 Triton 的内核,支持在异构设备上执行,包括 NVIDIA GPU 和 AMD GPU。 易于使用:只需更改几行代码即可获得巨大的性能提升 速度提升:每次迭代训练时间加快高达 1.73 倍 减少内存:将
1.本研究提出了蛋白质折叠进化模拟器(PFES),这是一个从随机氨基酸序列开始,以原子分辨率模拟蛋白质进化的计算框架。 2.作者利用PFES证明,稳定的球状蛋白质折叠可以相对容易地从随机序列进化而来,每个位点只需0.2到3个突变,与LUCA以来观察到的进化变化相当或更少。 3.值得注意的是,大约一半进化出的蛋白质与已知的自然折叠(例如HTH、SH3和β三明治)相似,而其余的则是独一无二的,这凸
1.codonGPT引入了第一个直接在编码mRNA序列(密码子)上训练的生成语言模型,解决了基于RNA的序列建模中一个主要问题,该问题一直落后于DNA和蛋白质建模的进展。 2.一项关键创新是使用推理时间同义逻辑掩蔽,确保生成的密码子序列以100%的保真度保留原始氨基酸序列,这对于治疗应用至关重要。 3.强化学习(RL)首次在codonGPT的基础上用于优化特定蛋白质的密码子序列。这允许用户跨
只显示前20页数据,更多请搜索
Showing 25 to 33 of 33 results