关键词 "轻量级" 的搜索结果, 共 16 条, 只显示前 480 条
ContractCrab是基于AI技术的在线合同管理工具,能简化和缩短冗长的法律文件。ContractCrab基于自然语言处理技术理解合同内容,识别关键条款、去除冗余部分,生成精简而准确的合同摘要。工具能节省时间,提高文档的可读性和理解性,让合同审查和管理过程更加高效。用户轻松下载、打印或将摘要整合到其他文档中,便于与同事分享和向上级汇报。 ContractCrab的产品定价 Pay as
一款轻量级终端运行编码智能体 —— Codex CLI,该工具现已在 GitHub 完全开源。是OpenAI开发的。 Codex CLI 可以直接在用户的计算机上工作,旨在最大化 o3 和 o4-mini 等模型的推理能力,并即将支持 GPT-4.1 等额外的 API 模型。 Codex CLI 可以在 macOS 12+、Ubuntu 20.04+/Debian 10+、Windows 11
开源轻量级通用生物医学视觉-语言基础模型BiomedGPT,则在多种生物医学任务上展现先进性能。BiomedGPT在25项实验中有16项达到先进水平,并在人类评估中表现出色,总结能力接近人类专家。
✨ 轻量级快速的 AI 助手,支持 Claude、DeepSeek、GPT4 和 Gemini Pro。 您满足公司尖端化配置和定制需求 品牌定制:企业定制VI/UI,与企业品牌形象无缝契合 资源集成:由企业管理人员统一配置和管理记录种AI资源,团队成员开箱即用 权限管理:成员权限、资源权限、知识库权限制度划分,企业级管理面板统一控制 知识接入:企业内部知识库与AI能力相结合,比通用
ACE-Step,这是一个用于音乐生成的全新开源基础模型,它克服了现有方法的关键局限性,并通过整体架构设计实现了最佳性能。当前的方法在生成速度、音乐连贯性和可控性之间面临着固有的权衡。例如,基于 LLM 的模型(例如 Yue、SongGen)在歌词对齐方面表现出色,但推理速度慢且存在结构性伪影。另一方面,扩散模型(例如 DiffRhythm)虽然能够实现更快的合成速度,但通常缺乏长距离的结构连贯性
DreamFit是什么 DreamFit是字节跳动团队联合清华大学深圳国际研究生院、中山大学深圳校区推出的虚拟试衣框架,专门用在轻量级服装为中心的人类图像生成。框架能显著减少模型复杂度和训练成本,基于优化文本提示和特征融合,提高生成图像的质量和一致性。DreamFit能泛化到各种服装、风格和提示指令,生成高质量的人物图像。DreamFit支持与社区控制插件的无缝集成,降低使用门槛。 Dre
TinyVLA是一种面向机器人操控的视觉-语言-动作(VLA)模型,由华东师范大学和上海大学团队推出。针对现有VLA模型的不足,如推理速度慢和需要大量数据预训练,提出解决方案。TinyVLA基于轻量级的多模态模型和扩散策略解码器,显著提高推理速度,减少对大规模数据集的依赖。模型在模拟和真实机器人平台上经过广泛测试,证明在速度、数据效率以及多任务学习和泛化能力方面优于现有的先进模型OpenVLA。T
Being-M0 基于业界首个百万级动作数据集 MotionLib,用创新的 MotionBook 编码技术,将动作序列转化为二维图像进行高效表示和生成。Being-M0 验证了大数据+大模型在动作生成领域的技术可行性,显著提升动作生成的多样性和语义对齐精度,实现从人体动作到多款人形机器人的高效迁移,为通用动作智能奠定基础。 Being-M0的主要功能 文本驱动动作生成:根据输入的自然语言
🤱🏻 使用 Rust 将任何网页变成桌面应用程序。 🤱🏻利用Rust轻松构建轻量级多端桌面应用 Pake 支持 Mac、Windows 和 Linux。查看 README 文件,了解热门软件包、命令行打包和定制开发信息。欢迎在讨论区分享您的建议。 特征 🎐 比 Electron 包小近 20 倍(约 5M!) 🚀 借助 Rust Tauri,Pake 比基于 JS 的框架更加轻
Devstral是Mistral AI和All Hands AI推出的专为软件工程任务设计的编程专用模型。Devstral在解决真实世界软件问题上表现出色,在SWE-Bench Verified基准测试中,得分46.8%大幅领先其他开源模型。Devstral支持处理复杂代码库中的上下文关系、识别组件间联系及发现细微的代码错误。Devstral轻量级,能在单个RTX 4090或32GB内存的Mac上
DMind是DMind研究机构发布的专为Web3领域优化的大型语言模型。针对区块链、去中心化金融和智能合约等场景深度优化,使用Web3数据微调采用RLHF技术对齐。DMind在Web3专项基准测试中表现优异,性能远超一线通用模型,推理成本仅为主流大模型的十分之一。包含DMind-1和DMind-1-mini两个版本,前者适合复杂指令和多轮对话,后者轻量级,响应快、延迟低,适合代理部署和链上工具。
Dolphin 是字节跳动开源的轻量级、高效的文档解析大模型。基于先解析结构后解析内容的两阶段方法,第一阶段生成文档布局元素序列,第二阶段用元素作为锚点并行解析内容。Dolphin在多种文档解析任务上表现出色,性能超越GPT-4.1、Mistral-OCR等模型。Dolphin 具有322M参数,体积小、速度快,支持多种文档元素解析,包括文本、表格、公式等。Dolphin的代码和预训练模型已公开,
Pocket Flow 是极简的 LLM(大型语言模型)框架,仅用 100 行代码实现。具有轻量级、无依赖、无厂商锁定的特点。Pocket Flow支持多Agents、工作流、检索增强生成(RAG)等强大功能,帮助开发者快速构建基于 LLM 的应用程序。基于Agentic Coding范式,AI Agents协助开发,大幅提升开发效率。Pocket Flow 适合希望用极简方式开发 LLM 应用的
SmolVLA 是 Hugging Face 开源的轻量级视觉-语言-行动(VLA)模型,专为经济高效的机器人设计。拥有4.5亿参数,模型小巧,可在CPU上运行,单个消费级GPU即可训练,能在MacBook上部署。SmolVLA 完全基于开源数据集训练,数据集标签为“lerobot”。 SmolVLA的主要功能 多模态输入处理:SmolVLA 能处理多种输入,包括多幅图像、语言指令以及
MNN轻量级高性能推理引擎 通用性 - 支持TensorFlow、Caffe、ONNX等主流模型格式,支持CNN、RNN、GAN等常用网络。 高性能 - 极致优化算子性能,全面支持CPU、GPU、NPU,充分发挥设备算力。 易用性 - 转换、可视化、调试工具齐全,能方便地部署到移动设备和各种嵌入式设备中。 什么是 TaoAvatar?它是阿里最新研究
1. 本研究介绍了 PrefixProt,这是一个新颖的框架,它通过利用预训练蛋白质语言模型 (ProtLM) 上的前缀调整来实现可控蛋白质设计。它使用学习到的虚拟标记作为模块化控制标签,引导蛋白质生成朝着所需的结构和功能特性发展。 2. PrefixProt 最引人注目的特性在于它能够通过组合不同的虚拟标记来生成具有多种用户自定义属性(例如结构和功能)的蛋白质,而无需重新训练基础模型。这种组合
只显示前20页数据,更多请搜索