关键词 "Dream journal" 的搜索结果, 共 21 条, 只显示前 480 条
Create and interact with customizable virtual girlfriends on DreamGF.ai using AI technology.
A suite of magical AI tools for generating, modifying, and expanding images.
AI story generator for personalized romance and erotic fiction.
Personalised story generation made easy.
AI video generator for vivid creations.
收集MCP服务器和客户端资源
HiDream-I1是vivago.ai公司最新开源图像生成基础模型,拥有 17B 参数,可在数秒内达到最先进的图像生成质量。
DreamFactory MCP Server enables AI assistants like Claude to directly query your databases through DreamFactory's auto-generated REST APIs.
Mirror of
MCP server designed to help you search and analyze your photo library (iCloud)
MCP Server for journaling
字节开源DreamO,统一图像定制框架,把图像换装、换脸、换造型、换风格以及组合操作装在了一起 支持ID、IP、Try-On等组合,支持16GB/24GB显卡运行,用于虚拟试穿、商品广告、营销广告什么的比较实用 四个能力: IP,处理角色形象,支持人物、物体、动物等输入 ID,人脸身份处理 Try-On,虚拟试穿,可以同时换多件衣服 Style,风格迁移,目前还不能和其他任务组合 DreamO正
Nexus-Gen:图像理解、生成和编辑的统一模型,开源届的GPT-4o平替 待办事项 发布训练和推理代码。 发布模型检查点。 发布技术报告。 发布训练数据集。 什么是Nexus-Gen Nexus-Gen 是一个统一模型,它将 LLM 的语言推理能力与扩散模型的图像合成能力协同起来。为了对齐 LLM 和扩散模型的嵌入
DreamFit是什么 DreamFit是字节跳动团队联合清华大学深圳国际研究生院、中山大学深圳校区推出的虚拟试衣框架,专门用在轻量级服装为中心的人类图像生成。框架能显著减少模型复杂度和训练成本,基于优化文本提示和特征融合,提高生成图像的质量和一致性。DreamFit能泛化到各种服装、风格和提示指令,生成高质量的人物图像。DreamFit支持与社区控制插件的无缝集成,降低使用门槛。 Dre
ViLAMP(VIdeo-LAnguage Model with Mixed Precision)是蚂蚁集团和中国人民大学联合推出的视觉语言模型,专门用在高效处理长视频内容。基于混合精度策略,对视频中的关键帧保持高精度分析,显著降低计算成本提高处理效率。ViLAMP在多个视频理解基准测试中表现出色,在长视频理解任务中,展现出显著优势。ViLAMP能在单张A100 GPU上处理长达1万帧(约3小时)
BILIVE 是基于 AI 技术的开源工具,专为 B 站直播录制与处理设计。工具支持自动录制直播、渲染弹幕和字幕,支持语音识别、自动切片精彩片段,生成有趣的标题和风格化的视频封面。BILIVE 能自动将处理后的视频投稿至 B 站,综合多种模态模型,兼容超低配置机器,无需 GPU 即可运行,适合个人用户和小型服务器使用。 1. Introduction Have you notice
AnimeGamer 是基于多模态大型语言模型(MLLM)构建的,可以生成动态动画镜头和角色状态更新,为用户提供无尽的动漫生活体验。它允许用户通过开放式语言指令与动漫角色互动,创建独特的冒险故事。该产品的主要优点包括:动态生成与角色交互的动画,能够在不同动漫之间创建交互,丰富的游戏状态预测等。 快速入门 🔮 环境设置 要设置推理环境,您
DreamGen是英伟达推出的创新的机器人学习技术,基于AI视频世界模型生成合成数据,让机器人能在梦境中学习新技能。DreamGen仅需少量现实视频数据,能生成大规模逼真的训练数据,实现机器人在新环境中的行为泛化和环境泛化。DreamGen的四步流程包括微调视频世界模型、生成虚拟数据、提取虚拟动作以及训练下游策略。DreamGen让机器人在没有真实世界数据支持的情况下,凭文本指令完成复杂任务,显著
Moondream是一个免费开源的小型的人工智能视觉语言模型,虽然参数量小(Moondream1仅16亿,Moondream2为18.6亿)但可以提供高性能的视觉处理能力,可在本地计算机甚至移动设备或 Raspberry Pi 上运行,能够快速理解和处理输入的图像信息并对用户提出的问题进行解答。该模型由开发人员vikhyatk推出,使用SigLP、Phi-1.5和LLaVa训练数据集和模型权重初始
字节跳动 Seed 团队今天正式发布图像编辑模型 SeedEdit 3.0。 该模型可处理并生成 4K 图像,在精细且自然地处理编辑区域的同时,还能高保真地维持其他信息。尤其针对图像编辑“哪里改与哪里不改”的取舍,该模型表现出更佳的理解力和权衡力,可用率相应提高。 依靠 AI 完成指令式图像编辑的需求,广泛存在于视觉内容创意工作中。但此前,图像编辑模型在主体&背景保持、指令遵循等方面能
只显示前20页数据,更多请搜索
Showing 241 to 261 of 261 results