关键词 "Stable diffusion XL" 的搜索结果, 共 3 条, 只显示前 480 条
深度生成序列模型的归因分配使得仅使用正数据进行可解释性分析成为可能 1.本文介绍了 GAMA(生成归因度量分析),这是第一个基于积分梯度的归因方法,适用于仅基于正样本数据训练的自回归生成模型。即使没有负样本,GAMA 也能解释此类生成模型所学习的特征。 2.与大多数为监督学习开发的可解释性工具不同,GAMA 适用于单类生成模型,例如长短期记忆(LSTM),这类模型常用于抗体设计,因为负样本(非
MirageLSD 是 Decart AI 团队推出的全球首个 Live-Stream Diffusion(实时流扩散)AI 视频模型,能实现无限时长的实时视频生成,延迟低至 40 毫秒以内,支持 24 帧/秒的流畅输出。通过 Diffusion Forcing 技术和历史增强训练,解决了传统自回归模型在长时间生成中的误差累积问题,实现了视频的无限生成。基于Hopper 优化的 Mega Kern
Seed Diffusion是字节跳动Seed团队推出的实验性扩散语言模型,专注于代码生成任务。模型通过两阶段扩散训练、约束顺序学习和强化高效并行解码等关键技术,实现显著的推理加速。模型的推理速度达到2146 tokens/s,比同等规模的自回归模型快5.4倍,在多个代码基准测试中表现与自回归模型相当,在代码编辑任务上超越自回归模型。Seed Diffusion展示了离散扩散模型作为下一代生成模型
只显示前20页数据,更多请搜索
Showing 217 to 219 of 219 results