关键词 "基因组" 的搜索结果, 共 11 条, 只显示前 480 条
模型SurvPath利用转录组学中的生物通路标记和 WSI 中的组织学补丁标记,通过多模态 Transformer 促进记忆有效的融合。SurvPath 在来自癌症基因组图谱的五个数据集中超越了单模态和多模态基线,展示了最先进的性能。此外,我们的可解释性框架识别了关键的多模态预后因素,为基因型-表型相互作用和潜在的生物学机制提供了更深入的见解。
基于深度学习的组织学和基因组学多模态整合,以改善癌症起源预测
gget是一个免费的开源命令行工具和 Python 包,可以高效地查询基因组数据库。gget 由一组独立但可互操作的模块组成,每个模块旨在通过一行代码实现一种类型的数据库查询。
一、核心技术:自学习和自修复的治疗引擎 PathOS Platform™是Pathos AI 的专有平台,构建于现代数据基础设施之上,能够自动化地进行靶点识别和优先级排序。 核心技术为自学习和自修复的Discovery Engine(发现引擎): 1、自动靶点识别:利用多种正交方法(orthogonal methods)自动识别和优先排序药物靶点。 2、自适应模型:能够根据新数据进行自我学
Translational360™ 整合了临床、基因组、转录组和全切片成像 (WSI) 等综合分子检测技术,旨在深入了解表型和基因组学。转录组学正日益成为生物制药转化科学的基础,帮助研究人员了解疾病的分子机制、患者反应的基础以及患者间差异,这对于开发新疗法至关重要。临床试验早期结果往往模棱两可,阳性和阴性反应各有不同。集成的数据解决方案和先进的人工智能技术,能够帮助研究人员选择成功率最高的项目,并
疾病领域:神经科学和代谢疾病 近期融资:C轮融资4亿美元 最新消息:与礼来公司合作,推进包括MASLD在内的代谢疾病的新型治疗方法 通过生成与患者数据一致的高通量功能基因组数据集,并通过新颖的机器学习方法解读这些数据,insitro 构建了能够加速靶点选择和有效疗法设计的预测模型。这项人工智能辅助药物研发为 insitro 的研发管线奠定了基础,该管线涵盖神经科学和代谢疾病领域的候选
专长:RNA 疗法的基因洞察。Deep Genomics 利用人工智能解码基因组数据,并识别 RNA 疗法的靶点。其专有平台 SPIDEX 已为罕见遗传疾病的治疗开发出有前景的候选药物。Deep Genomics 在利用人工智能设计下一代 RNA 药物方面处于领先地位。 2015年,Brendan Frey与Hannes Bretschneider等人成立了Deep Genomics。公司有20
专长:绘制神经系统疾病的致病基因图谱。Verge Genomics 利用人工智能分析基因组和转录组数据,识别肌萎缩侧索硬化症 (ALS) 和帕金森病等疾病的靶点。其专有平台加速了神经治疗药物的研发,并致力于降低临床试验的失败率。
专长:利用人工智能和基因组学加速药物发现。Engine Biosciences 将人工智能与基因组学相结合,以发现基因相互作用和新型药物靶点。他们的研发管线涵盖肿瘤学和传染病领域的候选药物,展现了人工智能驱动的洞察力在药物发现领域的强大力量。
Lantern Pharma成立于2013年,2020年在纳斯达克上市,是一家以肿瘤学为重点的,新兴的临床阶段制药公司,利用人工智能、基因组学和机器学习来改变药物发现和开发的成本、速度和时间。 员工仅20余人,市值仅4600多万美元,是业界对Lantern的初步印象。 但其商业模式更别具一格: 接盘大公司放弃的药物继续研发, 即通过其AI平台找到被弃药物的临床人群药效,缩小目标人群进行研发,从
2021年7月,谷歌旗下DeepMind团队和欧洲生物信息研究所(EMBL-EBI)合作,发布由人工智能系统AlphaFold预测的蛋白结构数据库(AlphaFold Protein Structure Database)。这一数据库包含了AlphaFold人工智能系统预测的约35万个蛋白结构,覆盖包括人类以及20种生物学研究中常用模式生物(大肠杆菌、果蝇、斑马鱼、小鼠…)。在人类蛋白质组方面,A
只显示前20页数据,更多请搜索