关键词 "癌症" 的搜索结果, 共 7 条, 只显示前 480 条
上海交通大学清源研究院的研究人员提出了PathoDuet框架,针对病理切片图像的特点,设计了跨尺度定位和跨染色迁移两个预训练任务,有效利用了图像放大倍数和染色方式之间的关联性。PathoDuet在结直肠癌分型和免疫组化标记物表达预测等任务中优于现有方法。此外,通用病理基础模型UNI[39]在超过100万张诊断切片上进行了大规模无监督学习,并在34个任务中展现了卓越的性能。该模型支持分辨率无关分类、少样本学习等,并具备对108种癌症类型的泛化分类能力。
MedSAM医学图像分割基础模型,能够在广泛的任务范围内对多种模态的医学图像进行高性能分割。MedSAM在SAM模型的基础上,使用超过150万的图片和分割掩码进行训练,包含了10种图像模态以及30种癌症类别。
通用病理基础模型UNI在超过100万张诊断切片上进行了大规模无监督学习,并在34个任务中展现了卓越的性能。该模型支持分辨率无关分类、少样本学习等,并具备对108种癌症类型的泛化分类能力。
模型SurvPath利用转录组学中的生物通路标记和 WSI 中的组织学补丁标记,通过多模态 Transformer 促进记忆有效的融合。SurvPath 在来自癌症基因组图谱的五个数据集中超越了单模态和多模态基线,展示了最先进的性能。此外,我们的可解释性框架识别了关键的多模态预后因素,为基因型-表型相互作用和潜在的生物学机制提供了更深入的见解。
PORPOISE,这是一个交互式的免费平台,可直接生成由我们的模型确定的数千名多种癌症类型患者的预后标记。为了验证这些模型解释的预后价值,我们分析了 WSI 中关注度较高的形态学区域,结果表明,在 14 种癌症类型中,有 12 种存在肿瘤浸润淋巴细胞,这证实了癌症预后良好。
基于深度学习的组织学和基因组学多模态整合,以改善癌症起源预测
组织病理学图像评估对于癌症诊断和亚型分类至关重要。用于组织病理学图像分析的标准人工智能方法专注于优化针对每个诊断任务的专门模型 。尽管此类方法已取得一些成功,但它们对由不同数字化协议生成的图像或从不同人群采集的样本的普遍性通常有限。在此,为了应对这一挑战,我们设计了临床组织病理学影像评估基础 (CHIEF) 模型,这是一个通用的弱监督机器学习框架,用于提取病理影像特征以进行系统的癌症评估。CHIEF 利用两种互补的预训练方法来提取不同的病理表示:用于图块级特征识别的无监督预训练和用于全切片模式识别的弱监督预训练。我们使用涵盖 19 个解剖部位的 60,530 张全切片图像开发了 CHIEF。 CHIEF 通过在 44 TB 高分辨率病理成像数据集上进行预训练,提取了可用于癌细胞检测、肿瘤起源识别、分子谱表征和预后预测的微观表征。我们使用来自全球 24 家医院和队列的 32 个独立切片集的 19,491 张全切片图像成功验证了 CHIEF。总体而言,CHIEF 的表现比最先进的深度学习方法高出 36.1%,展现了其能够处理在不同人群样本中观察到的领域偏移(domain shift),并采用不同的切片制备方法进行处理。CHIEF 为癌症患者的高效数字病理评估奠定了可推广的基础。
只显示前20页数据,更多请搜索