关键词 "机器学习" 的搜索结果, 共 4 条, 只显示前 480 条
MAPS(用于空间生物学中蛋白质组学分析的机器学习),这是一种机器学习方法,能够从空间蛋白质组学数据中快速、精确地识别细胞类型,并达到人类水平的精度。经多个内部和公开的 MIBI 和 CODEX 数据集验证,MAPS 在速度和精度方面均优于现有的注释技术,即使对于通常具有挑战性的细胞类型(包括免疫来源的肿瘤细胞),也能达到病理学家级别的精度。通过实现快速部署和可扩展的机器学习注释的普及,MAPS 拥有巨大的潜力,可以加速组织生物学和疾病理解的进步。
组织病理学图像评估对于癌症诊断和亚型分类至关重要。用于组织病理学图像分析的标准人工智能方法专注于优化针对每个诊断任务的专门模型 。尽管此类方法已取得一些成功,但它们对由不同数字化协议生成的图像或从不同人群采集的样本的普遍性通常有限。在此,为了应对这一挑战,我们设计了临床组织病理学影像评估基础 (CHIEF) 模型,这是一个通用的弱监督机器学习框架,用于提取病理影像特征以进行系统的癌症评估。CHIEF 利用两种互补的预训练方法来提取不同的病理表示:用于图块级特征识别的无监督预训练和用于全切片模式识别的弱监督预训练。我们使用涵盖 19 个解剖部位的 60,530 张全切片图像开发了 CHIEF。 CHIEF 通过在 44 TB 高分辨率病理成像数据集上进行预训练,提取了可用于癌细胞检测、肿瘤起源识别、分子谱表征和预后预测的微观表征。我们使用来自全球 24 家医院和队列的 32 个独立切片集的 19,491 张全切片图像成功验证了 CHIEF。总体而言,CHIEF 的表现比最先进的深度学习方法高出 36.1%,展现了其能够处理在不同人群样本中观察到的领域偏移(domain shift),并采用不同的切片制备方法进行处理。CHIEF 为癌症患者的高效数字病理评估奠定了可推广的基础。
Paper2Code:机器学习中科学论文的自动代码生成 PaperCoder是一个多智能体 LLM 系统,可将论文转化为代码库。它遵循三阶段流程:规划、分析和代码生成,每个阶段均由专门的智能体处理。 我们的方法在 Paper2Code 和 PaperBench 上的表现均优于强大的基准测试,并能生成忠实、高质量的实现。
PapertoCode 是一款专业的 AI 工具,旨在将研究论文方法论直接转化为可执行的 Python 代码。PapertoCode 的核心目标是简化开发者和研究人员将前沿研究成果付诸实践的流程。其实现方式是分析研究论文的实施部分,提取关键方法论,并将其转换为可立即使用的 Python 代码。例如,如果一篇论文描述了一种用于图像分类的新型机器学习模型,包括数据预处理步骤、模型架构、训练流程和评估指标,PapertoCode 将使用 TensorFlow 或 PyTorch 等合适的库,为每个组件提供 Python 代码。这使得用户能够快速从理论理解转向实际应用。由ChatGPT-4o提供支持。
只显示前20页数据,更多请搜索